![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version |
Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
Ref | Expression |
---|---|
fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2p1e3 12431 | . . . 4 ⊢ (2 + 1) = 3 | |
2 | 0z 12646 | . . . . 5 ⊢ 0 ∈ ℤ | |
3 | 3z 12672 | . . . . 5 ⊢ 3 ∈ ℤ | |
4 | 0re 11288 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 3re 12369 | . . . . . 6 ⊢ 3 ∈ ℝ | |
6 | 3pos 12394 | . . . . . 6 ⊢ 0 < 3 | |
7 | 4, 5, 6 | ltleii 11409 | . . . . 5 ⊢ 0 ≤ 3 |
8 | eluz2 12905 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
9 | 2, 3, 7, 8 | mpbir3an 1341 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
10 | 1, 9 | eqeltri 2834 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
11 | 2z 12671 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | 5nn0 12569 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
13 | 12 | nn0zi 12664 | . . . 4 ⊢ 5 ∈ ℤ |
14 | 2re 12363 | . . . . 5 ⊢ 2 ∈ ℝ | |
15 | 5re 12376 | . . . . 5 ⊢ 5 ∈ ℝ | |
16 | 2lt5 12468 | . . . . 5 ⊢ 2 < 5 | |
17 | 14, 15, 16 | ltleii 11409 | . . . 4 ⊢ 2 ≤ 5 |
18 | eluz2 12905 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
19 | 11, 13, 17, 18 | mpbir3an 1341 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
20 | fzsplit2 13605 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
21 | 10, 19, 20 | mp2an 691 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
22 | fz0tp 13681 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
23 | 1 | oveq1i 7455 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
24 | 3p2e5 12440 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
25 | 24 | eqcomi 2743 | . . . . . 6 ⊢ 5 = (3 + 2) |
26 | 25 | oveq2i 7456 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
27 | fztp 13636 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
29 | eqid 2734 | . . . . . 6 ⊢ 3 = 3 | |
30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
31 | 3p1e4 12434 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
34 | 30, 32, 33 | tpeq123d 4773 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
36 | 26, 28, 35 | 3eqtri 2766 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
37 | 23, 36 | eqtri 2762 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
38 | 22, 37 | uneq12i 4183 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
39 | 21, 38 | eqtri 2762 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 ∪ cun 3968 {ctp 4652 class class class wbr 5169 ‘cfv 6572 (class class class)co 7445 0cc0 11180 1c1 11181 + caddc 11183 ≤ cle 11321 2c2 12344 3c3 12345 4c4 12346 5c5 12347 ℤcz 12635 ℤ≥cuz 12899 ...cfz 13563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 |
This theorem is referenced by: usgrexmpl1vtx 47758 usgrexmpl2vtx 47763 |
Copyright terms: Public domain | W3C validator |