![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version |
Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
Ref | Expression |
---|---|
fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2p1e3 12406 | . . . 4 ⊢ (2 + 1) = 3 | |
2 | 0z 12622 | . . . . 5 ⊢ 0 ∈ ℤ | |
3 | 3z 12648 | . . . . 5 ⊢ 3 ∈ ℤ | |
4 | 0re 11261 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 3re 12344 | . . . . . 6 ⊢ 3 ∈ ℝ | |
6 | 3pos 12369 | . . . . . 6 ⊢ 0 < 3 | |
7 | 4, 5, 6 | ltleii 11382 | . . . . 5 ⊢ 0 ≤ 3 |
8 | eluz2 12882 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
9 | 2, 3, 7, 8 | mpbir3an 1340 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
10 | 1, 9 | eqeltri 2835 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
11 | 2z 12647 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | 5nn0 12544 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
13 | 12 | nn0zi 12640 | . . . 4 ⊢ 5 ∈ ℤ |
14 | 2re 12338 | . . . . 5 ⊢ 2 ∈ ℝ | |
15 | 5re 12351 | . . . . 5 ⊢ 5 ∈ ℝ | |
16 | 2lt5 12443 | . . . . 5 ⊢ 2 < 5 | |
17 | 14, 15, 16 | ltleii 11382 | . . . 4 ⊢ 2 ≤ 5 |
18 | eluz2 12882 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
19 | 11, 13, 17, 18 | mpbir3an 1340 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
20 | fzsplit2 13586 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
21 | 10, 19, 20 | mp2an 692 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
22 | fz0tp 13665 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
23 | 1 | oveq1i 7441 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
24 | 3p2e5 12415 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
25 | 24 | eqcomi 2744 | . . . . . 6 ⊢ 5 = (3 + 2) |
26 | 25 | oveq2i 7442 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
27 | fztp 13617 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
29 | eqid 2735 | . . . . . 6 ⊢ 3 = 3 | |
30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
31 | 3p1e4 12409 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
34 | 30, 32, 33 | tpeq123d 4753 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
36 | 26, 28, 35 | 3eqtri 2767 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
37 | 23, 36 | eqtri 2763 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
38 | 22, 37 | uneq12i 4176 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
39 | 21, 38 | eqtri 2763 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∪ cun 3961 {ctp 4635 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ≤ cle 11294 2c2 12319 3c3 12320 4c4 12321 5c5 12322 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: usgrexmpl1vtx 47918 usgrexmpl2vtx 47923 |
Copyright terms: Public domain | W3C validator |