| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 12269 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12486 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12511 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11121 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12212 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12237 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11243 | . . . . 5 ⊢ 0 ≤ 3 |
| 8 | eluz2 12744 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1342 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
| 10 | 1, 9 | eqeltri 2829 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
| 11 | 2z 12510 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 5nn0 12408 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 13 | 12 | nn0zi 12503 | . . . 4 ⊢ 5 ∈ ℤ |
| 14 | 2re 12206 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 15 | 5re 12219 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 16 | 2lt5 12306 | . . . . 5 ⊢ 2 < 5 | |
| 17 | 14, 15, 16 | ltleii 11243 | . . . 4 ⊢ 2 ≤ 5 |
| 18 | eluz2 12744 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
| 19 | 11, 13, 17, 18 | mpbir3an 1342 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
| 20 | fzsplit2 13451 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
| 21 | 10, 19, 20 | mp2an 692 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
| 22 | fz0tp 13530 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 23 | 1 | oveq1i 7362 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
| 24 | 3p2e5 12278 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 25 | 24 | eqcomi 2742 | . . . . . 6 ⊢ 5 = (3 + 2) |
| 26 | 25 | oveq2i 7363 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
| 27 | fztp 13482 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
| 28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
| 29 | eqid 2733 | . . . . . 6 ⊢ 3 = 3 | |
| 30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
| 31 | 3p1e4 12272 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
| 33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
| 34 | 30, 32, 33 | tpeq123d 4700 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
| 35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
| 36 | 26, 28, 35 | 3eqtri 2760 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
| 37 | 23, 36 | eqtri 2756 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
| 38 | 22, 37 | uneq12i 4115 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
| 39 | 21, 38 | eqtri 2756 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∪ cun 3896 {ctp 4579 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 ≤ cle 11154 2c2 12187 3c3 12188 4c4 12189 5c5 12190 ℤcz 12475 ℤ≥cuz 12738 ...cfz 13409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 |
| This theorem is referenced by: usgrexmpl1vtx 48147 usgrexmpl2vtx 48152 |
| Copyright terms: Public domain | W3C validator |