| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 12259 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12476 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12502 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11111 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12202 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12227 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11233 | . . . . 5 ⊢ 0 ≤ 3 |
| 8 | eluz2 12735 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1342 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
| 10 | 1, 9 | eqeltri 2827 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
| 11 | 2z 12501 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 5nn0 12398 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 13 | 12 | nn0zi 12494 | . . . 4 ⊢ 5 ∈ ℤ |
| 14 | 2re 12196 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 15 | 5re 12209 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 16 | 2lt5 12296 | . . . . 5 ⊢ 2 < 5 | |
| 17 | 14, 15, 16 | ltleii 11233 | . . . 4 ⊢ 2 ≤ 5 |
| 18 | eluz2 12735 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
| 19 | 11, 13, 17, 18 | mpbir3an 1342 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
| 20 | fzsplit2 13446 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
| 21 | 10, 19, 20 | mp2an 692 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
| 22 | fz0tp 13525 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 23 | 1 | oveq1i 7356 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
| 24 | 3p2e5 12268 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 25 | 24 | eqcomi 2740 | . . . . . 6 ⊢ 5 = (3 + 2) |
| 26 | 25 | oveq2i 7357 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
| 27 | fztp 13477 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
| 28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
| 29 | eqid 2731 | . . . . . 6 ⊢ 3 = 3 | |
| 30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
| 31 | 3p1e4 12262 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
| 33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
| 34 | 30, 32, 33 | tpeq123d 4701 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
| 35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
| 36 | 26, 28, 35 | 3eqtri 2758 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
| 37 | 23, 36 | eqtri 2754 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
| 38 | 22, 37 | uneq12i 4116 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
| 39 | 21, 38 | eqtri 2754 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cun 3900 {ctp 4580 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 ≤ cle 11144 2c2 12177 3c3 12178 4c4 12179 5c5 12180 ℤcz 12465 ℤ≥cuz 12729 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 |
| This theorem is referenced by: usgrexmpl1vtx 48053 usgrexmpl2vtx 48058 |
| Copyright terms: Public domain | W3C validator |