| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 12391 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12608 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12634 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11246 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12329 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12354 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11367 | . . . . 5 ⊢ 0 ≤ 3 |
| 8 | eluz2 12867 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1341 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
| 10 | 1, 9 | eqeltri 2829 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
| 11 | 2z 12633 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 5nn0 12530 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 13 | 12 | nn0zi 12626 | . . . 4 ⊢ 5 ∈ ℤ |
| 14 | 2re 12323 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 15 | 5re 12336 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 16 | 2lt5 12428 | . . . . 5 ⊢ 2 < 5 | |
| 17 | 14, 15, 16 | ltleii 11367 | . . . 4 ⊢ 2 ≤ 5 |
| 18 | eluz2 12867 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
| 19 | 11, 13, 17, 18 | mpbir3an 1341 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
| 20 | fzsplit2 13572 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
| 21 | 10, 19, 20 | mp2an 692 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
| 22 | fz0tp 13651 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 23 | 1 | oveq1i 7424 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
| 24 | 3p2e5 12400 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 25 | 24 | eqcomi 2743 | . . . . . 6 ⊢ 5 = (3 + 2) |
| 26 | 25 | oveq2i 7425 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
| 27 | fztp 13603 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
| 28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
| 29 | eqid 2734 | . . . . . 6 ⊢ 3 = 3 | |
| 30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
| 31 | 3p1e4 12394 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
| 33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
| 34 | 30, 32, 33 | tpeq123d 4730 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
| 35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
| 36 | 26, 28, 35 | 3eqtri 2761 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
| 37 | 23, 36 | eqtri 2757 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
| 38 | 22, 37 | uneq12i 4148 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
| 39 | 21, 38 | eqtri 2757 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∪ cun 3931 {ctp 4612 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 ≤ cle 11279 2c2 12304 3c3 12305 4c4 12306 5c5 12307 ℤcz 12597 ℤ≥cuz 12861 ...cfz 13530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 |
| This theorem is referenced by: usgrexmpl1vtx 47928 usgrexmpl2vtx 47933 |
| Copyright terms: Public domain | W3C validator |