| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to5un2tp | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| fz0to5un2tp | ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 12323 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12540 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12566 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12266 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12291 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11297 | . . . . 5 ⊢ 0 ≤ 3 |
| 8 | eluz2 12799 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1342 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
| 10 | 1, 9 | eqeltri 2824 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
| 11 | 2z 12565 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 5nn0 12462 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 13 | 12 | nn0zi 12558 | . . . 4 ⊢ 5 ∈ ℤ |
| 14 | 2re 12260 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 15 | 5re 12273 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 16 | 2lt5 12360 | . . . . 5 ⊢ 2 < 5 | |
| 17 | 14, 15, 16 | ltleii 11297 | . . . 4 ⊢ 2 ≤ 5 |
| 18 | eluz2 12799 | . . . 4 ⊢ (5 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5)) | |
| 19 | 11, 13, 17, 18 | mpbir3an 1342 | . . 3 ⊢ 5 ∈ (ℤ≥‘2) |
| 20 | fzsplit2 13510 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 5 ∈ (ℤ≥‘2)) → (0...5) = ((0...2) ∪ ((2 + 1)...5))) | |
| 21 | 10, 19, 20 | mp2an 692 | . 2 ⊢ (0...5) = ((0...2) ∪ ((2 + 1)...5)) |
| 22 | fz0tp 13589 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 23 | 1 | oveq1i 7397 | . . . 4 ⊢ ((2 + 1)...5) = (3...5) |
| 24 | 3p2e5 12332 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 25 | 24 | eqcomi 2738 | . . . . . 6 ⊢ 5 = (3 + 2) |
| 26 | 25 | oveq2i 7398 | . . . . 5 ⊢ (3...5) = (3...(3 + 2)) |
| 27 | fztp 13541 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 2)) = {3, (3 + 1), (3 + 2)}) | |
| 28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 2)) = {3, (3 + 1), (3 + 2)} |
| 29 | eqid 2729 | . . . . . 6 ⊢ 3 = 3 | |
| 30 | id 22 | . . . . . . 7 ⊢ (3 = 3 → 3 = 3) | |
| 31 | 3p1e4 12326 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 32 | 31 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 1) = 4) |
| 33 | 24 | a1i 11 | . . . . . . 7 ⊢ (3 = 3 → (3 + 2) = 5) |
| 34 | 30, 32, 33 | tpeq123d 4712 | . . . . . 6 ⊢ (3 = 3 → {3, (3 + 1), (3 + 2)} = {3, 4, 5}) |
| 35 | 29, 34 | ax-mp 5 | . . . . 5 ⊢ {3, (3 + 1), (3 + 2)} = {3, 4, 5} |
| 36 | 26, 28, 35 | 3eqtri 2756 | . . . 4 ⊢ (3...5) = {3, 4, 5} |
| 37 | 23, 36 | eqtri 2752 | . . 3 ⊢ ((2 + 1)...5) = {3, 4, 5} |
| 38 | 22, 37 | uneq12i 4129 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...5)) = ({0, 1, 2} ∪ {3, 4, 5}) |
| 39 | 21, 38 | eqtri 2752 | 1 ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {ctp 4593 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 2c2 12241 3c3 12242 4c4 12243 5c5 12244 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: usgrexmpl1vtx 48014 usgrexmpl2vtx 48019 |
| Copyright terms: Public domain | W3C validator |