MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdmultiplezOLD Structured version   Visualization version   GIF version

Theorem gcdmultiplezOLD 15901
Description: Obsolete proof of gcdmultiplez 15883 as of 12-Jan-2024. Extend gcdmultiple 15884 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
gcdmultiplezOLD ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiplezOLD
StepHypRef Expression
1 oveq2 7164 . . . 4 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
21oveq2d 7172 . . 3 (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0)))
32eqeq1d 2823 . 2 (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀))
4 nncn 11646 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5 zcn 11987 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6 absmul 14654 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
74, 5, 6syl2an 597 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
8 nnre 11645 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
9 nnnn0 11905 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
109nn0ge0d 11959 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
118, 10absidd 14782 . . . . . . . 8 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
1211oveq1d 7171 . . . . . . 7 (𝑀 ∈ ℕ → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
1312adantr 483 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
147, 13eqtrd 2856 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · (abs‘𝑁)))
1514oveq2d 7172 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
1615adantr 483 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
17 simpll 765 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℕ)
1817nnzd 12087 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℤ)
19 nnz 12005 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
20 zmulcl 12032 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2119, 20sylan 582 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2221adantr 483 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ)
23 gcdabs2 15879 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
2418, 22, 23syl2anc 586 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
25 nnabscl 14685 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
26 gcdmultiple 15884 . . . . 5 ((𝑀 ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
2725, 26sylan2 594 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
2827anassrs 470 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
2916, 24, 283eqtr3d 2864 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
30 mul01 10819 . . . . . 6 (𝑀 ∈ ℂ → (𝑀 · 0) = 0)
3130oveq2d 7172 . . . . 5 (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
324, 31syl 17 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
3332adantr 483 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
34 nn0gcdid0 15869 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 gcd 0) = 𝑀)
359, 34syl 17 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀)
3635adantr 483 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀)
3733, 36eqtrd 2856 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀)
383, 29, 37pm2.61ne 3102 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   · cmul 10542  cn 11638  0cn0 11898  cz 11982  abscabs 14593   gcd cgcd 15843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator