Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdmultiplezOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of gcdmultiplez 16243 as of 12-Jan-2024. Extend gcdmultiple 16244 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
gcdmultiplezOLD | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . . 4 ⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) | |
2 | 1 | oveq2d 7291 | . . 3 ⊢ (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0))) |
3 | 2 | eqeq1d 2740 | . 2 ⊢ (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀)) |
4 | nncn 11981 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
5 | zcn 12324 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
6 | absmul 15006 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) | |
7 | 4, 5, 6 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
8 | nnre 11980 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
9 | nnnn0 12240 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
10 | 9 | nn0ge0d 12296 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
11 | 8, 10 | absidd 15134 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀) |
12 | 11 | oveq1d 7290 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
14 | 7, 13 | eqtrd 2778 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · (abs‘𝑁))) |
15 | 14 | oveq2d 7291 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
16 | 15 | adantr 481 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
17 | simpll 764 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℕ) | |
18 | 17 | nnzd 12425 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℤ) |
19 | nnz 12342 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
20 | zmulcl 12369 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
21 | 19, 20 | sylan 580 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
22 | 21 | adantr 481 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ) |
23 | gcdabs2 16237 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) | |
24 | 18, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) |
25 | nnabscl 15037 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
26 | gcdmultiple 16244 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) | |
27 | 25, 26 | sylan2 593 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
28 | 27 | anassrs 468 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
29 | 16, 24, 28 | 3eqtr3d 2786 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |
30 | mul01 11154 | . . . . . 6 ⊢ (𝑀 ∈ ℂ → (𝑀 · 0) = 0) | |
31 | 30 | oveq2d 7291 | . . . . 5 ⊢ (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
32 | 4, 31 | syl 17 | . . . 4 ⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
33 | 32 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
34 | nn0gcdid0 16228 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑀 gcd 0) = 𝑀) | |
35 | 9, 34 | syl 17 | . . . 4 ⊢ (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀) |
36 | 35 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀) |
37 | 33, 36 | eqtrd 2778 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀) |
38 | 3, 29, 37 | pm2.61ne 3030 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 · cmul 10876 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 abscabs 14945 gcd cgcd 16201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |