MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdmultipleOLD Structured version   Visualization version   GIF version

Theorem gcdmultipleOLD 16188
Description: Obsolete proof of gcdmultiple 16172 as of 12-Jan-2024. The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
gcdmultipleOLD ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultipleOLD
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1))
21oveq2d 7271 . . . . 5 (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1)))
32eqeq1d 2740 . . . 4 (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀))
43imbi2d 340 . . 3 (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)))
5 oveq2 7263 . . . . . 6 (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛))
65oveq2d 7271 . . . . 5 (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛)))
76eqeq1d 2740 . . . 4 (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)))
9 oveq2 7263 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1)))
109oveq2d 7271 . . . . 5 (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
1110eqeq1d 2740 . . . 4 (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
13 oveq2 7263 . . . . . 6 (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁))
1413oveq2d 7271 . . . . 5 (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁)))
1514eqeq1d 2740 . . . 4 (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)))
17 nncn 11911 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
1817mulid1d 10923 . . . . 5 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
1918oveq2d 7271 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀))
20 nnz 12272 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21 gcdid 16162 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2220, 21syl 17 . . . . 5 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀))
23 nnre 11910 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
24 nnnn0 12170 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
2524nn0ge0d 12226 . . . . . 6 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2623, 25absidd 15062 . . . . 5 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2722, 26eqtrd 2778 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀)
2819, 27eqtrd 2778 . . 3 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)
29 1z 12280 . . . . . . . . 9 1 ∈ ℤ
30 nnz 12272 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
31 zmulcl 12299 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ)
3220, 30, 31syl2an 595 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ)
33 gcdaddm 16160 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3429, 20, 32, 33mp3an2ani 1466 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
35 nncn 11911 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
36 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
37 adddi 10891 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
3836, 37mp3an3 1448 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
39 mulcom 10888 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4036, 39mpan2 687 . . . . . . . . . . . . 13 (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀))
4140adantr 480 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4241oveq2d 7271 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4338, 42eqtrd 2778 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4417, 35, 43syl2an 595 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4544oveq2d 7271 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
4634, 45eqtr4d 2781 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
4746eqeq1d 2740 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
4847biimpd 228 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
4948expcom 413 . . . 4 (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
5049a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
514, 8, 12, 16, 28, 50nnind 11921 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
5251impcom 407 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  cz 12249  abscabs 14873   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator