| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgorder | Structured version Visualization version GIF version | ||
| Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgorder.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| Ref | Expression |
|---|---|
| gpgorder | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgorder.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 2 | eqid 2735 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 3 | 1, 2 | gpgvtx 47995 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 4 | 3 | fveq2d 6879 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (♯‘({0, 1} × (0..^𝑁)))) |
| 5 | prfi 9333 | . . . 4 ⊢ {0, 1} ∈ Fin | |
| 6 | fzofi 13990 | . . . 4 ⊢ (0..^𝑁) ∈ Fin | |
| 7 | 5, 6 | pm3.2i 470 | . . 3 ⊢ ({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) |
| 8 | hashxp 14450 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) |
| 10 | prhash2ex 14415 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘{0, 1}) = 2) |
| 12 | nnnn0 12506 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 13 | hashfzo0 14446 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(0..^𝑁)) = 𝑁) |
| 16 | 11, 15 | oveq12d 7421 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → ((♯‘{0, 1}) · (♯‘(0..^𝑁))) = (2 · 𝑁)) |
| 17 | 4, 9, 16 | 3eqtrd 2774 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cpr 4603 × cxp 5652 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 0cc0 11127 1c1 11128 · cmul 11132 / cdiv 11892 ℕcn 12238 2c2 12293 ℕ0cn0 12499 ..^cfzo 13669 ⌈cceil 13806 ♯chash 14346 Vtxcvtx 28921 gPetersenGr cgpg 47992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-gpg 47993 |
| This theorem is referenced by: gpg5order 48012 |
| Copyright terms: Public domain | W3C validator |