| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgorder | Structured version Visualization version GIF version | ||
| Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgorder.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| Ref | Expression |
|---|---|
| gpgorder | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgorder.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 2 | eqid 2733 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 3 | 1, 2 | gpgvtx 48157 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 4 | 3 | fveq2d 6835 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (♯‘({0, 1} × (0..^𝑁)))) |
| 5 | prfi 9218 | . . . 4 ⊢ {0, 1} ∈ Fin | |
| 6 | fzofi 13891 | . . . 4 ⊢ (0..^𝑁) ∈ Fin | |
| 7 | 5, 6 | pm3.2i 470 | . . 3 ⊢ ({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) |
| 8 | hashxp 14351 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) |
| 10 | prhash2ex 14316 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘{0, 1}) = 2) |
| 12 | nnnn0 12398 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 13 | hashfzo0 14347 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(0..^𝑁)) = 𝑁) |
| 16 | 11, 15 | oveq12d 7373 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → ((♯‘{0, 1}) · (♯‘(0..^𝑁))) = (2 · 𝑁)) |
| 17 | 4, 9, 16 | 3eqtrd 2772 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cpr 4579 × cxp 5619 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 0cc0 11016 1c1 11017 · cmul 11021 / cdiv 11784 ℕcn 12135 2c2 12190 ℕ0cn0 12391 ..^cfzo 13564 ⌈cceil 13705 ♯chash 14247 Vtxcvtx 28985 gPetersenGr cgpg 48154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-xnn0 12465 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-struct 17068 df-slot 17103 df-ndx 17115 df-base 17131 df-edgf 28978 df-vtx 28987 df-gpg 48155 |
| This theorem is referenced by: gpg5order 48174 |
| Copyright terms: Public domain | W3C validator |