![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgorder | Structured version Visualization version GIF version |
Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
Ref | Expression |
---|---|
gpgorder.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
Ref | Expression |
---|---|
gpgorder | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gpgorder.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
2 | eqid 2734 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
3 | 1, 2 | gpgvtx 47937 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
4 | 3 | fveq2d 6910 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (♯‘({0, 1} × (0..^𝑁)))) |
5 | prfi 9360 | . . . 4 ⊢ {0, 1} ∈ Fin | |
6 | fzofi 14011 | . . . 4 ⊢ (0..^𝑁) ∈ Fin | |
7 | 5, 6 | pm3.2i 470 | . . 3 ⊢ ({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) |
8 | hashxp 14469 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) | |
9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) |
10 | prhash2ex 14434 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
11 | 10 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘{0, 1}) = 2) |
12 | nnnn0 12530 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
13 | hashfzo0 14465 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(0..^𝑁)) = 𝑁) |
16 | 11, 15 | oveq12d 7448 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → ((♯‘{0, 1}) · (♯‘(0..^𝑁))) = (2 · 𝑁)) |
17 | 4, 9, 16 | 3eqtrd 2778 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cpr 4632 × cxp 5686 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 0cc0 11152 1c1 11153 · cmul 11157 / cdiv 11917 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ..^cfzo 13690 ⌈cceil 13827 ♯chash 14365 Vtxcvtx 29027 gPetersenGr cgpg 47934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-xnn0 12597 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-edgf 29018 df-vtx 29029 df-gpg 47935 |
This theorem is referenced by: gpg5order 47948 |
Copyright terms: Public domain | W3C validator |