| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgorder | Structured version Visualization version GIF version | ||
| Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgorder.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| Ref | Expression |
|---|---|
| gpgorder | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgorder.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 2 | eqid 2730 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 3 | 1, 2 | gpgvtx 48053 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 4 | 3 | fveq2d 6821 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (♯‘({0, 1} × (0..^𝑁)))) |
| 5 | prfi 9203 | . . . 4 ⊢ {0, 1} ∈ Fin | |
| 6 | fzofi 13873 | . . . 4 ⊢ (0..^𝑁) ∈ Fin | |
| 7 | 5, 6 | pm3.2i 470 | . . 3 ⊢ ({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) |
| 8 | hashxp 14333 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘({0, 1} × (0..^𝑁))) = ((♯‘{0, 1}) · (♯‘(0..^𝑁)))) |
| 10 | prhash2ex 14298 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘{0, 1}) = 2) |
| 12 | nnnn0 12380 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 13 | hashfzo0 14329 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(0..^𝑁)) = 𝑁) |
| 16 | 11, 15 | oveq12d 7359 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → ((♯‘{0, 1}) · (♯‘(0..^𝑁))) = (2 · 𝑁)) |
| 17 | 4, 9, 16 | 3eqtrd 2769 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cpr 4576 × cxp 5612 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 0cc0 10998 1c1 10999 · cmul 11003 / cdiv 11766 ℕcn 12117 2c2 12172 ℕ0cn0 12373 ..^cfzo 13546 ⌈cceil 13687 ♯chash 14229 Vtxcvtx 28967 gPetersenGr cgpg 48050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-edgf 28960 df-vtx 28969 df-gpg 48051 |
| This theorem is referenced by: gpg5order 48070 |
| Copyright terms: Public domain | W3C validator |