| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5order | Structured version Visualization version GIF version | ||
| Description: The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| Ref | Expression |
|---|---|
| gpg5order | ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12203 | . . 3 ⊢ 5 ∈ ℕ | |
| 2 | 2z 12496 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 3 | fzval3 13626 | . . . . . . 7 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1...2) = (1..^(2 + 1)) |
| 5 | 2p1e3 12254 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 6 | ceil5half3 47350 | . . . . . . . 8 ⊢ (⌈‘(5 / 2)) = 3 | |
| 7 | 5, 6 | eqtr4i 2756 | . . . . . . 7 ⊢ (2 + 1) = (⌈‘(5 / 2)) |
| 8 | 7 | oveq2i 7352 | . . . . . 6 ⊢ (1..^(2 + 1)) = (1..^(⌈‘(5 / 2))) |
| 9 | 4, 8 | eqtri 2753 | . . . . 5 ⊢ (1...2) = (1..^(⌈‘(5 / 2))) |
| 10 | 9 | eleq2i 2821 | . . . 4 ⊢ (𝐾 ∈ (1...2) ↔ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 11 | 10 | biimpi 216 | . . 3 ⊢ (𝐾 ∈ (1...2) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 12 | eqid 2730 | . . . 4 ⊢ (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2))) | |
| 13 | 12 | gpgorder 48069 | . . 3 ⊢ ((5 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = (2 · 5)) |
| 14 | 1, 11, 13 | sylancr 587 | . 2 ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = (2 · 5)) |
| 15 | 5cn 12205 | . . 3 ⊢ 5 ∈ ℂ | |
| 16 | 2cn 12192 | . . 3 ⊢ 2 ∈ ℂ | |
| 17 | 5t2e10 12680 | . . 3 ⊢ (5 · 2) = ;10 | |
| 18 | 15, 16, 17 | mulcomli 11113 | . 2 ⊢ (2 · 5) = ;10 |
| 19 | 14, 18 | eqtrdi 2781 | 1 ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 + caddc 11001 · cmul 11003 / cdiv 11766 ℕcn 12117 2c2 12172 3c3 12173 5c5 12175 ℤcz 12460 ;cdc 12580 ...cfz 13399 ..^cfzo 13546 ⌈cceil 13687 ♯chash 14229 Vtxcvtx 28967 gPetersenGr cgpg 48050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-ceil 13689 df-mod 13766 df-hash 14230 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-edgf 28960 df-vtx 28969 df-gpg 48051 |
| This theorem is referenced by: gpg5grlic 48104 |
| Copyright terms: Public domain | W3C validator |