| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5order | Structured version Visualization version GIF version | ||
| Description: The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| Ref | Expression |
|---|---|
| gpg5order | ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12250 | . . 3 ⊢ 5 ∈ ℕ | |
| 2 | 2z 12543 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 3 | fzval3 13673 | . . . . . . 7 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1...2) = (1..^(2 + 1)) |
| 5 | 2p1e3 12301 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 6 | ceil5half3 47335 | . . . . . . . 8 ⊢ (⌈‘(5 / 2)) = 3 | |
| 7 | 5, 6 | eqtr4i 2755 | . . . . . . 7 ⊢ (2 + 1) = (⌈‘(5 / 2)) |
| 8 | 7 | oveq2i 7380 | . . . . . 6 ⊢ (1..^(2 + 1)) = (1..^(⌈‘(5 / 2))) |
| 9 | 4, 8 | eqtri 2752 | . . . . 5 ⊢ (1...2) = (1..^(⌈‘(5 / 2))) |
| 10 | 9 | eleq2i 2820 | . . . 4 ⊢ (𝐾 ∈ (1...2) ↔ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 11 | 10 | biimpi 216 | . . 3 ⊢ (𝐾 ∈ (1...2) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 12 | eqid 2729 | . . . 4 ⊢ (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2))) | |
| 13 | 12 | gpgorder 48044 | . . 3 ⊢ ((5 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = (2 · 5)) |
| 14 | 1, 11, 13 | sylancr 587 | . 2 ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = (2 · 5)) |
| 15 | 5cn 12252 | . . 3 ⊢ 5 ∈ ℂ | |
| 16 | 2cn 12239 | . . 3 ⊢ 2 ∈ ℂ | |
| 17 | 5t2e10 12727 | . . 3 ⊢ (5 · 2) = ;10 | |
| 18 | 15, 16, 17 | mulcomli 11161 | . 2 ⊢ (2 · 5) = ;10 |
| 19 | 14, 18 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 0cc0 11046 1c1 11047 + caddc 11049 · cmul 11051 / cdiv 11813 ℕcn 12164 2c2 12219 3c3 12220 5c5 12222 ℤcz 12507 ;cdc 12627 ...cfz 13446 ..^cfzo 13593 ⌈cceil 13731 ♯chash 14273 Vtxcvtx 28977 gPetersenGr cgpg 48025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-dju 9832 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-xnn0 12494 df-z 12508 df-dec 12628 df-uz 12772 df-rp 12930 df-fz 13447 df-fzo 13594 df-fl 13732 df-ceil 13733 df-mod 13810 df-hash 14274 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-edgf 28970 df-vtx 28979 df-gpg 48026 |
| This theorem is referenced by: gpg5grlic 48078 |
| Copyright terms: Public domain | W3C validator |