MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem5 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem5 27258
Description: Lemma 5 for gausslemma2d 27261. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥,𝑘)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem5a 27257 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
6 fzfi 13913 . . . . . 6 ((𝑀 + 1)...𝐻) ∈ Fin
76a1i 11 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
8 neg1cn 12147 . . . . . 6 -1 ∈ ℂ
98a1i 11 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈ ℂ)
10 elfzelz 13461 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
11 2z 12541 . . . . . . . . 9 2 ∈ ℤ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
1310, 12zmulcld 12620 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
1413zcnd 12615 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
1514adantl 481 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ)
167, 9, 15fprodmul 15902 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
176, 8pm3.2i 470 . . . . . . 7 (((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ)
18 fprodconst 15920 . . . . . . 7 ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
1917, 18mp1i 13 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
20 nnoddn2prm 16758 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
21 nnre 12169 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ)
231, 20, 223syl 18 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
24 4re 12246 . . . . . . . . . . . . . . 15 4 ∈ ℝ
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
26 4ne0 12270 . . . . . . . . . . . . . . 15 4 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ≠ 0)
2823, 25, 27redivcld 11986 . . . . . . . . . . . . 13 (𝜑 → (𝑃 / 4) ∈ ℝ)
2928flcld 13736 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
304, 29eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3130peano2zd 12617 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
32 nnz 12526 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
33 oddm1d2 16306 . . . . . . . . . . . . . 14 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3432, 33syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3534biimpa 476 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
361, 20, 353syl 18 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
372, 36eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
381, 4, 2gausslemma2dlem0f 27248 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ≤ 𝐻)
39 eluz2 12775 . . . . . . . . . 10 (𝐻 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻))
4031, 37, 38, 39syl3anbrc 1344 . . . . . . . . 9 (𝜑𝐻 ∈ (ℤ‘(𝑀 + 1)))
41 hashfz 14368 . . . . . . . . 9 (𝐻 ∈ (ℤ‘(𝑀 + 1)) → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4240, 41syl 17 . . . . . . . 8 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4337zcnd 12615 . . . . . . . . . 10 (𝜑𝐻 ∈ ℂ)
4430zcnd 12615 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
45 1cnd 11145 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
4643, 44, 45nppcan2d 11535 . . . . . . . . 9 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻𝑀))
47 gausslemma2d.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
4846, 47eqtr4di 2782 . . . . . . . 8 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁)
4942, 48eqtrd 2764 . . . . . . 7 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = 𝑁)
5049oveq2d 7385 . . . . . 6 (𝜑 → (-1↑(♯‘((𝑀 + 1)...𝐻))) = (-1↑𝑁))
5119, 50eqtrd 2764 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁))
5251oveq1d 7384 . . . 4 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5316, 52eqtrd 2764 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5453oveq1d 7384 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
555, 54eqtrd 2764 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  4c4 12219  cz 12505  cuz 12769  ...cfz 13444  cfl 13728   mod cmo 13807  cexp 14002  chash 14271  cprod 15845  cdvds 16198  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-prm 16618
This theorem is referenced by:  gausslemma2dlem6  27259
  Copyright terms: Public domain W3C validator