MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem5 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem5 27322
Description: Lemma 5 for gausslemma2d 27325. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥,𝑘)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem5a 27321 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
6 fzfi 13975 . . . . . 6 ((𝑀 + 1)...𝐻) ∈ Fin
76a1i 11 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
8 neg1cn 12362 . . . . . 6 -1 ∈ ℂ
98a1i 11 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈ ℂ)
10 elfzelz 13539 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
11 2z 12630 . . . . . . . . 9 2 ∈ ℤ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
1310, 12zmulcld 12708 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
1413zcnd 12703 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
1514adantl 480 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ)
167, 9, 15fprodmul 15942 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
176, 8pm3.2i 469 . . . . . . 7 (((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ)
18 fprodconst 15960 . . . . . . 7 ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
1917, 18mp1i 13 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
20 nnoddn2prm 16785 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
21 nnre 12255 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
2221adantr 479 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ)
231, 20, 223syl 18 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
24 4re 12332 . . . . . . . . . . . . . . 15 4 ∈ ℝ
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
26 4ne0 12356 . . . . . . . . . . . . . . 15 4 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ≠ 0)
2823, 25, 27redivcld 12078 . . . . . . . . . . . . 13 (𝜑 → (𝑃 / 4) ∈ ℝ)
2928flcld 13801 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
304, 29eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3130peano2zd 12705 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
32 nnz 12615 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
33 oddm1d2 16342 . . . . . . . . . . . . . 14 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3432, 33syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3534biimpa 475 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
361, 20, 353syl 18 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
372, 36eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
381, 4, 2gausslemma2dlem0f 27312 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ≤ 𝐻)
39 eluz2 12864 . . . . . . . . . 10 (𝐻 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻))
4031, 37, 38, 39syl3anbrc 1340 . . . . . . . . 9 (𝜑𝐻 ∈ (ℤ‘(𝑀 + 1)))
41 hashfz 14424 . . . . . . . . 9 (𝐻 ∈ (ℤ‘(𝑀 + 1)) → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4240, 41syl 17 . . . . . . . 8 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4337zcnd 12703 . . . . . . . . . 10 (𝜑𝐻 ∈ ℂ)
4430zcnd 12703 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
45 1cnd 11245 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
4643, 44, 45nppcan2d 11633 . . . . . . . . 9 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻𝑀))
47 gausslemma2d.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
4846, 47eqtr4di 2785 . . . . . . . 8 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁)
4942, 48eqtrd 2767 . . . . . . 7 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = 𝑁)
5049oveq2d 7440 . . . . . 6 (𝜑 → (-1↑(♯‘((𝑀 + 1)...𝐻))) = (-1↑𝑁))
5119, 50eqtrd 2767 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁))
5251oveq1d 7439 . . . 4 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5316, 52eqtrd 2767 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5453oveq1d 7439 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
555, 54eqtrd 2767 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2936  cdif 3944  ifcif 4530  {csn 4630   class class class wbr 5150  cmpt 5233  cfv 6551  (class class class)co 7424  Fincfn 8968  cc 11142  cr 11143  0cc0 11144  1c1 11145   + caddc 11147   · cmul 11149   < clt 11284  cle 11285  cmin 11480  -cneg 11481   / cdiv 11907  cn 12248  2c2 12303  4c4 12305  cz 12594  cuz 12858  ...cfz 13522  cfl 13793   mod cmo 13872  cexp 14064  chash 14327  cprod 15887  cdvds 16236  cprime 16647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-prod 15888  df-dvds 16237  df-prm 16648
This theorem is referenced by:  gausslemma2dlem6  27323
  Copyright terms: Public domain W3C validator