![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2i1fseq3 | Structured version Visualization version GIF version |
Description: Special case of itg2i1fseq2 25730: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
itg2i1fseq3.7 | ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) |
Ref | Expression |
---|---|
itg2i1fseq3 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2i1fseq.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
2 | itg2i1fseq.2 | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
3 | itg2i1fseq.3 | . 2 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
4 | itg2i1fseq.4 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) | |
5 | itg2i1fseq.5 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
6 | itg2i1fseq.6 | . 2 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
7 | itg2i1fseq3.7 | . 2 ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) | |
8 | icossicc 13448 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
9 | fss 6739 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) | |
10 | 2, 8, 9 | sylancl 584 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
11 | 10 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℝ⟶(0[,]+∞)) |
12 | 3 | ffvelcdmda 7093 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
13 | 1, 2, 3, 4, 5 | itg2i1fseqle 25728 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ 𝐹) |
14 | itg2ub 25707 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘r ≤ 𝐹) → (∫1‘(𝑃‘𝑘)) ≤ (∫2‘𝐹)) | |
15 | 11, 12, 13, 14 | syl3anc 1368 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫2‘𝐹)) |
16 | 1, 2, 3, 4, 5, 6, 7, 15 | itg2i1fseq2 25730 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ⊆ wss 3944 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∘r cofr 7684 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 +∞cpnf 11277 ≤ cle 11281 ℕcn 12245 [,)cico 13361 [,]cicc 13362 ⇝ cli 15464 MblFncmbf 25587 ∫1citg1 25588 ∫2citg2 25589 0𝑝c0p 25642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cc 10460 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-acn 9967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ioc 13364 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 df-sum 15669 df-rest 17407 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22840 df-topon 22857 df-bases 22893 df-cmp 23335 df-ovol 25437 df-vol 25438 df-mbf 25592 df-itg1 25593 df-itg2 25594 df-0p 25643 |
This theorem is referenced by: itg2addlem 25732 |
Copyright terms: Public domain | W3C validator |