MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq3 Structured version   Visualization version   GIF version

Theorem itg2i1fseq3 24340
Description: Special case of itg2i1fseq2 24339: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq3.7 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2i1fseq3 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg2i1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 itg2i1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 itg2i1fseq.3 . 2 (𝜑𝑃:ℕ⟶dom ∫1)
4 itg2i1fseq.4 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
5 itg2i1fseq.5 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
6 itg2i1fseq.6 . 2 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
7 itg2i1fseq3.7 . 2 (𝜑 → (∫2𝐹) ∈ ℝ)
8 icossicc 12804 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
9 fss 6500 . . . . 5 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
102, 8, 9sylancl 589 . . . 4 (𝜑𝐹:ℝ⟶(0[,]+∞))
1110adantr 484 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶(0[,]+∞))
123ffvelrnda 6824 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
131, 2, 3, 4, 5itg2i1fseqle 24337 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r𝐹)
14 itg2ub 24316 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑃𝑘) ∈ dom ∫1 ∧ (𝑃𝑘) ∘r𝐹) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
1511, 12, 13, 14syl3anc 1368 . 2 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
161, 2, 3, 4, 5, 6, 7, 15itg2i1fseq2 24339 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3126  wss 3910   class class class wbr 5039  cmpt 5119  dom cdm 5528  wf 6324  cfv 6328  (class class class)co 7130  r cofr 7383  cr 10513  0cc0 10514  1c1 10515   + caddc 10517  +∞cpnf 10649  cle 10653  cn 11615  [,)cico 12718  [,]cicc 12719  cli 14820  MblFncmbf 24197  1citg1 24198  2citg2 24199  0𝑝c0p 24252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cc 9834  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-omul 8082  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-rlim 14825  df-sum 15022  df-rest 16675  df-topgen 16696  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-top 21478  df-topon 21495  df-bases 21530  df-cmp 21971  df-ovol 24047  df-vol 24048  df-mbf 24202  df-itg1 24203  df-itg2 24204  df-0p 24253
This theorem is referenced by:  itg2addlem  24341
  Copyright terms: Public domain W3C validator