![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2i1fseq3 | Structured version Visualization version GIF version |
Description: Special case of itg2i1fseq2 23923: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘𝑟 ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))) |
itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
itg2i1fseq3.7 | ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) |
Ref | Expression |
---|---|
itg2i1fseq3 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2i1fseq.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
2 | itg2i1fseq.2 | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
3 | itg2i1fseq.3 | . 2 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
4 | itg2i1fseq.4 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘𝑟 ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))) | |
5 | itg2i1fseq.5 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
6 | itg2i1fseq.6 | . 2 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
7 | itg2i1fseq3.7 | . 2 ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) | |
8 | icossicc 12550 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
9 | fss 6292 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) | |
10 | 2, 8, 9 | sylancl 582 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
11 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℝ⟶(0[,]+∞)) |
12 | 3 | ffvelrnda 6609 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
13 | 1, 2, 3, 4, 5 | itg2i1fseqle 23921 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘𝑟 ≤ 𝐹) |
14 | itg2ub 23900 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘𝑟 ≤ 𝐹) → (∫1‘(𝑃‘𝑘)) ≤ (∫2‘𝐹)) | |
15 | 11, 12, 13, 14 | syl3anc 1496 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫2‘𝐹)) |
16 | 1, 2, 3, 4, 5, 6, 7, 15 | itg2i1fseq2 23923 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3118 ⊆ wss 3799 class class class wbr 4874 ↦ cmpt 4953 dom cdm 5343 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 ∘𝑟 cofr 7157 ℝcr 10252 0cc0 10253 1c1 10254 + caddc 10256 +∞cpnf 10389 ≤ cle 10393 ℕcn 11351 [,)cico 12466 [,]cicc 12467 ⇝ cli 14593 MblFncmbf 23781 ∫1citg1 23782 ∫2citg2 23783 0𝑝c0p 23836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cc 9573 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 ax-addf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-disj 4843 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-ofr 7159 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-omul 7832 df-er 8010 df-map 8125 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-fi 8587 df-sup 8618 df-inf 8619 df-oi 8685 df-card 9079 df-acn 9082 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-q 12073 df-rp 12114 df-xneg 12233 df-xadd 12234 df-xmul 12235 df-ioo 12468 df-ioc 12469 df-ico 12470 df-icc 12471 df-fz 12621 df-fzo 12762 df-fl 12889 df-seq 13097 df-exp 13156 df-hash 13412 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-clim 14597 df-rlim 14598 df-sum 14795 df-rest 16437 df-topgen 16458 df-psmet 20099 df-xmet 20100 df-met 20101 df-bl 20102 df-mopn 20103 df-top 21070 df-topon 21087 df-bases 21122 df-cmp 21562 df-ovol 23631 df-vol 23632 df-mbf 23786 df-itg1 23787 df-itg2 23788 df-0p 23837 |
This theorem is referenced by: itg2addlem 23925 |
Copyright terms: Public domain | W3C validator |