| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmdvglim | Structured version Visualization version GIF version | ||
| Description: If a monotonic real number sequence 𝐹 diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| lmdvglim.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| lmdvglim.1 | ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) |
| lmdvglim.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| lmdvglim.3 | ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| lmdvglim | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmdvglim.1 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) | |
| 2 | lmdvglim.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
| 3 | lmdvglim.3 | . . 3 ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) | |
| 4 | 1, 2, 3 | lmdvg 33952 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) |
| 5 | lmdvglim.j | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 6 | icossicc 13476 | . . . 4 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 7 | fss 6752 | . . . 4 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞)) | |
| 8 | 1, 6, 7 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶(0[,]+∞)) |
| 9 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 10 | 5, 8, 9 | lmxrge0 33951 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 class class class wbr 5143 dom cdm 5685 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 +∞cpnf 11292 < clt 11295 ≤ cle 11296 ℕcn 12266 ℤ≥cuz 12878 [,)cico 13389 [,]cicc 13390 ⇝ cli 15520 ↾s cress 17274 TopOpenctopn 17466 ℝ*𝑠cxrs 17545 ⇝𝑡clm 23234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-rest 17467 df-topn 17468 df-topgen 17488 df-ordt 17546 df-xrs 17547 df-ps 18611 df-tsr 18612 df-top 22900 df-topon 22917 df-bases 22953 df-lm 23237 |
| This theorem is referenced by: esumcvg 34087 |
| Copyright terms: Public domain | W3C validator |