| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmdvglim | Structured version Visualization version GIF version | ||
| Description: If a monotonic real number sequence 𝐹 diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| lmdvglim.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| lmdvglim.1 | ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) |
| lmdvglim.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| lmdvglim.3 | ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| lmdvglim | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmdvglim.1 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) | |
| 2 | lmdvglim.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
| 3 | lmdvglim.3 | . . 3 ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) | |
| 4 | 1, 2, 3 | lmdvg 33989 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) |
| 5 | lmdvglim.j | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 6 | icossicc 13340 | . . . 4 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 7 | fss 6674 | . . . 4 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞)) | |
| 8 | 1, 6, 7 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶(0[,]+∞)) |
| 9 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 10 | 5, 8, 9 | lmxrge0 33988 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5095 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 +∞cpnf 11152 < clt 11155 ≤ cle 11156 ℕcn 12134 ℤ≥cuz 12740 [,)cico 13251 [,]cicc 13252 ⇝ cli 15395 ↾s cress 17145 TopOpenctopn 17329 ℝ*𝑠cxrs 17408 ⇝𝑡clm 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fi 9304 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-rp 12895 df-ioo 13253 df-ioc 13254 df-ico 13255 df-icc 13256 df-fz 13412 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-tset 17184 df-ple 17185 df-ds 17187 df-rest 17330 df-topn 17331 df-topgen 17351 df-ordt 17409 df-xrs 17410 df-ps 18476 df-tsr 18477 df-top 22812 df-topon 22829 df-bases 22864 df-lm 23147 |
| This theorem is referenced by: esumcvg 34122 |
| Copyright terms: Public domain | W3C validator |