![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmdvglim | Structured version Visualization version GIF version |
Description: If a monotonic real number sequence πΉ diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
Ref | Expression |
---|---|
lmdvglim.j | β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) |
lmdvglim.1 | β’ (π β πΉ:ββΆ(0[,)+β)) |
lmdvglim.2 | β’ ((π β§ π β β) β (πΉβπ) β€ (πΉβ(π + 1))) |
lmdvglim.3 | β’ (π β Β¬ πΉ β dom β ) |
Ref | Expression |
---|---|
lmdvglim | β’ (π β πΉ(βπ‘βπ½)+β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmdvglim.1 | . . 3 β’ (π β πΉ:ββΆ(0[,)+β)) | |
2 | lmdvglim.2 | . . 3 β’ ((π β§ π β β) β (πΉβπ) β€ (πΉβ(π + 1))) | |
3 | lmdvglim.3 | . . 3 β’ (π β Β¬ πΉ β dom β ) | |
4 | 1, 2, 3 | lmdvg 33583 | . 2 β’ (π β βπ₯ β β βπ β β βπ β (β€β₯βπ)π₯ < (πΉβπ)) |
5 | lmdvglim.j | . . 3 β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) | |
6 | icossicc 13443 | . . . 4 β’ (0[,)+β) β (0[,]+β) | |
7 | fss 6732 | . . . 4 β’ ((πΉ:ββΆ(0[,)+β) β§ (0[,)+β) β (0[,]+β)) β πΉ:ββΆ(0[,]+β)) | |
8 | 1, 6, 7 | sylancl 584 | . . 3 β’ (π β πΉ:ββΆ(0[,]+β)) |
9 | eqidd 2726 | . . 3 β’ ((π β§ π β β) β (πΉβπ) = (πΉβπ)) | |
10 | 5, 8, 9 | lmxrge0 33582 | . 2 β’ (π β (πΉ(βπ‘βπ½)+β β βπ₯ β β βπ β β βπ β (β€β₯βπ)π₯ < (πΉβπ))) |
11 | 4, 10 | mpbird 256 | 1 β’ (π β πΉ(βπ‘βπ½)+β) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 βwrex 3060 β wss 3939 class class class wbr 5141 dom cdm 5670 βΆwf 6537 βcfv 6541 (class class class)co 7414 βcr 11135 0cc0 11136 1c1 11137 + caddc 11139 +βcpnf 11273 < clt 11276 β€ cle 11277 βcn 12240 β€β₯cuz 12850 [,)cico 13356 [,]cicc 13357 β cli 15458 βΎs cress 17206 TopOpenctopn 17400 β*π cxrs 17479 βπ‘clm 23146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-rp 13005 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-tset 17249 df-ple 17250 df-ds 17252 df-rest 17401 df-topn 17402 df-topgen 17422 df-ordt 17480 df-xrs 17481 df-ps 18555 df-tsr 18556 df-top 22812 df-topon 22829 df-bases 22865 df-lm 23149 |
This theorem is referenced by: esumcvg 33734 |
Copyright terms: Public domain | W3C validator |