| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet 24679 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 2 | metxmet 24242 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 ∘ ccom 5618 ‘cfv 6477 ℂcc 10996 − cmin 11336 abscabs 15133 ∞Metcxmet 21269 Metcmet 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-xadd 13004 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-xmet 21277 df-met 21278 |
| This theorem is referenced by: cnbl0 24681 cnfldms 24683 cnfldtopn 24689 cnfldhaus 24692 blcvx 24706 tgioo2 24711 recld2 24723 zdis 24725 reperflem 24727 addcnlem 24773 divcnOLD 24777 divcn 24779 iitopon 24792 dfii3 24796 cncfmet 24822 cncfcn 24823 cnheibor 24874 cnllycmp 24875 ipcn 25166 lmclim 25223 cnflduss 25276 reust 25301 ellimc3 25800 dvlipcn 25919 dvlip2 25920 dv11cn 25926 lhop1lem 25938 ftc1lem6 25968 ulmdvlem1 26329 ulmdvlem3 26331 psercn 26356 pserdvlem2 26358 pserdv 26359 abelthlem2 26362 abelthlem3 26363 abelthlem5 26365 abelthlem7 26368 abelth 26371 dvlog2lem 26581 dvlog2 26582 efopnlem2 26586 efopn 26587 logtayl 26589 logtayl2 26591 cxpcn3 26678 rlimcnp 26895 xrlimcnp 26898 efrlim 26899 efrlimOLD 26900 lgamucov 26968 lgamcvg2 26985 ftalem3 27005 smcnlem 30667 hhcnf 31875 tpr2rico 33915 qqhucn 33995 blsconn 35256 cnllysconn 35257 ftc1cnnc 37711 cntotbnd 37815 reheibor 37858 binomcxplemdvbinom 44365 binomcxplemnotnn0 44368 iooabslt 45518 limcrecl 45648 islpcn 45656 stirlinglem5 46095 |
| Copyright terms: Public domain | W3C validator |