| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet 24728 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 2 | metxmet 24289 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ∘ ccom 5669 ‘cfv 6541 ℂcc 11135 − cmin 11474 abscabs 15255 ∞Metcxmet 21311 Metcmet 21312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-xadd 13137 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-xmet 21319 df-met 21320 |
| This theorem is referenced by: cnbl0 24730 cnfldms 24732 cnfldtopn 24738 cnfldhaus 24741 blcvx 24755 tgioo2 24760 recld2 24772 zdis 24774 reperflem 24776 addcnlem 24822 divcnOLD 24826 divcn 24828 iitopon 24841 dfii3 24845 cncfmet 24871 cncfcn 24872 cnheibor 24923 cnllycmp 24924 ipcn 25216 lmclim 25273 cnflduss 25326 reust 25351 ellimc3 25850 dvlipcn 25969 dvlip2 25970 dv11cn 25976 lhop1lem 25988 ftc1lem6 26018 ulmdvlem1 26379 ulmdvlem3 26381 psercn 26406 pserdvlem2 26408 pserdv 26409 abelthlem2 26412 abelthlem3 26413 abelthlem5 26415 abelthlem7 26418 abelth 26421 dvlog2lem 26630 dvlog2 26631 efopnlem2 26635 efopn 26636 logtayl 26638 logtayl2 26640 cxpcn3 26727 rlimcnp 26944 xrlimcnp 26947 efrlim 26948 efrlimOLD 26949 lgamucov 27017 lgamcvg2 27034 ftalem3 27054 smcnlem 30644 hhcnf 31852 tpr2rico 33870 qqhucn 33952 blsconn 35208 cnllysconn 35209 ftc1cnnc 37658 cntotbnd 37762 reheibor 37805 binomcxplemdvbinom 44329 binomcxplemnotnn0 44332 iooabslt 45469 limcrecl 45601 islpcn 45611 stirlinglem5 46050 |
| Copyright terms: Public domain | W3C validator |