| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet 24666 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 2 | metxmet 24229 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∘ ccom 5645 ‘cfv 6514 ℂcc 11073 − cmin 11412 abscabs 15207 ∞Metcxmet 21256 Metcmet 21257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-xmet 21264 df-met 21265 |
| This theorem is referenced by: cnbl0 24668 cnfldms 24670 cnfldtopn 24676 cnfldhaus 24679 blcvx 24693 tgioo2 24698 recld2 24710 zdis 24712 reperflem 24714 addcnlem 24760 divcnOLD 24764 divcn 24766 iitopon 24779 dfii3 24783 cncfmet 24809 cncfcn 24810 cnheibor 24861 cnllycmp 24862 ipcn 25153 lmclim 25210 cnflduss 25263 reust 25288 ellimc3 25787 dvlipcn 25906 dvlip2 25907 dv11cn 25913 lhop1lem 25925 ftc1lem6 25955 ulmdvlem1 26316 ulmdvlem3 26318 psercn 26343 pserdvlem2 26345 pserdv 26346 abelthlem2 26349 abelthlem3 26350 abelthlem5 26352 abelthlem7 26355 abelth 26358 dvlog2lem 26568 dvlog2 26569 efopnlem2 26573 efopn 26574 logtayl 26576 logtayl2 26578 cxpcn3 26665 rlimcnp 26882 xrlimcnp 26885 efrlim 26886 efrlimOLD 26887 lgamucov 26955 lgamcvg2 26972 ftalem3 26992 smcnlem 30633 hhcnf 31841 tpr2rico 33909 qqhucn 33989 blsconn 35238 cnllysconn 35239 ftc1cnnc 37693 cntotbnd 37797 reheibor 37840 binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 iooabslt 45504 limcrecl 45634 islpcn 45644 stirlinglem5 46083 |
| Copyright terms: Public domain | W3C validator |