MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnxmet Structured version   Visualization version   GIF version

Theorem cnxmet 24729
Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
cnxmet (abs ∘ − ) ∈ (∞Met‘ℂ)

Proof of Theorem cnxmet
StepHypRef Expression
1 cnmet 24728 . 2 (abs ∘ − ) ∈ (Met‘ℂ)
2 metxmet 24289 . 2 ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
31, 2ax-mp 5 1 (abs ∘ − ) ∈ (∞Met‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  ccom 5669  cfv 6541  cc 11135  cmin 11474  abscabs 15255  ∞Metcxmet 21311  Metcmet 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-xadd 13137  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-xmet 21319  df-met 21320
This theorem is referenced by:  cnbl0  24730  cnfldms  24732  cnfldtopn  24738  cnfldhaus  24741  blcvx  24755  tgioo2  24760  recld2  24772  zdis  24774  reperflem  24776  addcnlem  24822  divcnOLD  24826  divcn  24828  iitopon  24841  dfii3  24845  cncfmet  24871  cncfcn  24872  cnheibor  24923  cnllycmp  24924  ipcn  25216  lmclim  25273  cnflduss  25326  reust  25351  ellimc3  25850  dvlipcn  25969  dvlip2  25970  dv11cn  25976  lhop1lem  25988  ftc1lem6  26018  ulmdvlem1  26379  ulmdvlem3  26381  psercn  26406  pserdvlem2  26408  pserdv  26409  abelthlem2  26412  abelthlem3  26413  abelthlem5  26415  abelthlem7  26418  abelth  26421  dvlog2lem  26630  dvlog2  26631  efopnlem2  26635  efopn  26636  logtayl  26638  logtayl2  26640  cxpcn3  26727  rlimcnp  26944  xrlimcnp  26947  efrlim  26948  efrlimOLD  26949  lgamucov  27017  lgamcvg2  27034  ftalem3  27054  smcnlem  30644  hhcnf  31852  tpr2rico  33870  qqhucn  33952  blsconn  35208  cnllysconn  35209  ftc1cnnc  37658  cntotbnd  37762  reheibor  37805  binomcxplemdvbinom  44329  binomcxplemnotnn0  44332  iooabslt  45469  limcrecl  45601  islpcn  45611  stirlinglem5  46050
  Copyright terms: Public domain W3C validator