| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet 24692 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 2 | metxmet 24255 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∘ ccom 5635 ‘cfv 6499 ℂcc 11042 − cmin 11381 abscabs 15176 ∞Metcxmet 21281 Metcmet 21282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-xadd 13049 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-xmet 21289 df-met 21290 |
| This theorem is referenced by: cnbl0 24694 cnfldms 24696 cnfldtopn 24702 cnfldhaus 24705 blcvx 24719 tgioo2 24724 recld2 24736 zdis 24738 reperflem 24740 addcnlem 24786 divcnOLD 24790 divcn 24792 iitopon 24805 dfii3 24809 cncfmet 24835 cncfcn 24836 cnheibor 24887 cnllycmp 24888 ipcn 25179 lmclim 25236 cnflduss 25289 reust 25314 ellimc3 25813 dvlipcn 25932 dvlip2 25933 dv11cn 25939 lhop1lem 25951 ftc1lem6 25981 ulmdvlem1 26342 ulmdvlem3 26344 psercn 26369 pserdvlem2 26371 pserdv 26372 abelthlem2 26375 abelthlem3 26376 abelthlem5 26378 abelthlem7 26381 abelth 26384 dvlog2lem 26594 dvlog2 26595 efopnlem2 26599 efopn 26600 logtayl 26602 logtayl2 26604 cxpcn3 26691 rlimcnp 26908 xrlimcnp 26911 efrlim 26912 efrlimOLD 26913 lgamucov 26981 lgamcvg2 26998 ftalem3 27018 smcnlem 30676 hhcnf 31884 tpr2rico 33895 qqhucn 33975 blsconn 35224 cnllysconn 35225 ftc1cnnc 37679 cntotbnd 37783 reheibor 37826 binomcxplemdvbinom 44335 binomcxplemnotnn0 44338 iooabslt 45490 limcrecl 45620 islpcn 45630 stirlinglem5 46069 |
| Copyright terms: Public domain | W3C validator |