| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet 24693 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 2 | metxmet 24256 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∘ ccom 5635 ‘cfv 6499 ℂcc 11044 − cmin 11383 abscabs 15177 ∞Metcxmet 21282 Metcmet 21283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-xadd 13051 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-xmet 21290 df-met 21291 |
| This theorem is referenced by: cnbl0 24695 cnfldms 24697 cnfldtopn 24703 cnfldhaus 24706 blcvx 24720 tgioo2 24725 recld2 24737 zdis 24739 reperflem 24741 addcnlem 24787 divcnOLD 24791 divcn 24793 iitopon 24806 dfii3 24810 cncfmet 24836 cncfcn 24837 cnheibor 24888 cnllycmp 24889 ipcn 25180 lmclim 25237 cnflduss 25290 reust 25315 ellimc3 25814 dvlipcn 25933 dvlip2 25934 dv11cn 25940 lhop1lem 25952 ftc1lem6 25982 ulmdvlem1 26343 ulmdvlem3 26345 psercn 26370 pserdvlem2 26372 pserdv 26373 abelthlem2 26376 abelthlem3 26377 abelthlem5 26379 abelthlem7 26382 abelth 26385 dvlog2lem 26595 dvlog2 26596 efopnlem2 26600 efopn 26601 logtayl 26603 logtayl2 26605 cxpcn3 26692 rlimcnp 26909 xrlimcnp 26912 efrlim 26913 efrlimOLD 26914 lgamucov 26982 lgamcvg2 26999 ftalem3 27019 smcnlem 30677 hhcnf 31885 tpr2rico 33896 qqhucn 33976 blsconn 35225 cnllysconn 35226 ftc1cnnc 37680 cntotbnd 37784 reheibor 37827 binomcxplemdvbinom 44336 binomcxplemnotnn0 44339 iooabslt 45491 limcrecl 45621 islpcn 45631 stirlinglem5 46070 |
| Copyright terms: Public domain | W3C validator |