![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version |
Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmet 24813 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
2 | metxmet 24365 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∘ ccom 5704 ‘cfv 6573 ℂcc 11182 − cmin 11520 abscabs 15283 ∞Metcxmet 21372 Metcmet 21373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-xmet 21380 df-met 21381 |
This theorem is referenced by: cnbl0 24815 cnfldms 24817 cnfldtopn 24823 cnfldhaus 24826 blcvx 24839 tgioo2 24844 recld2 24855 zdis 24857 reperflem 24859 addcnlem 24905 divcnOLD 24909 divcn 24911 iitopon 24924 dfii3 24928 cncfmet 24954 cncfcn 24955 cnheibor 25006 cnllycmp 25007 ipcn 25299 lmclim 25356 cnflduss 25409 reust 25434 ellimc3 25934 dvlipcn 26053 dvlip2 26054 dv11cn 26060 lhop1lem 26072 ftc1lem6 26102 ulmdvlem1 26461 ulmdvlem3 26463 psercn 26488 pserdvlem2 26490 pserdv 26491 abelthlem2 26494 abelthlem3 26495 abelthlem5 26497 abelthlem7 26500 abelth 26503 dvlog2lem 26712 dvlog2 26713 efopnlem2 26717 efopn 26718 logtayl 26720 logtayl2 26722 cxpcn3 26809 rlimcnp 27026 xrlimcnp 27029 efrlim 27030 efrlimOLD 27031 lgamucov 27099 lgamcvg2 27116 ftalem3 27136 smcnlem 30729 hhcnf 31937 tpr2rico 33858 qqhucn 33938 blsconn 35212 cnllysconn 35213 ftc1cnnc 37652 cntotbnd 37756 reheibor 37799 binomcxplemdvbinom 44322 binomcxplemnotnn0 44325 iooabslt 45417 limcrecl 45550 islpcn 45560 stirlinglem5 45999 |
Copyright terms: Public domain | W3C validator |