![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version |
Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmet 24807 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
2 | metxmet 24359 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∘ ccom 5692 ‘cfv 6562 ℂcc 11150 − cmin 11489 abscabs 15269 ∞Metcxmet 21366 Metcmet 21367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-xadd 13152 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-xmet 21374 df-met 21375 |
This theorem is referenced by: cnbl0 24809 cnfldms 24811 cnfldtopn 24817 cnfldhaus 24820 blcvx 24833 tgioo2 24838 recld2 24849 zdis 24851 reperflem 24853 addcnlem 24899 divcnOLD 24903 divcn 24905 iitopon 24918 dfii3 24922 cncfmet 24948 cncfcn 24949 cnheibor 25000 cnllycmp 25001 ipcn 25293 lmclim 25350 cnflduss 25403 reust 25428 ellimc3 25928 dvlipcn 26047 dvlip2 26048 dv11cn 26054 lhop1lem 26066 ftc1lem6 26096 ulmdvlem1 26457 ulmdvlem3 26459 psercn 26484 pserdvlem2 26486 pserdv 26487 abelthlem2 26490 abelthlem3 26491 abelthlem5 26493 abelthlem7 26496 abelth 26499 dvlog2lem 26708 dvlog2 26709 efopnlem2 26713 efopn 26714 logtayl 26716 logtayl2 26718 cxpcn3 26805 rlimcnp 27022 xrlimcnp 27025 efrlim 27026 efrlimOLD 27027 lgamucov 27095 lgamcvg2 27112 ftalem3 27132 smcnlem 30725 hhcnf 31933 tpr2rico 33872 qqhucn 33954 blsconn 35228 cnllysconn 35229 ftc1cnnc 37678 cntotbnd 37782 reheibor 37825 binomcxplemdvbinom 44348 binomcxplemnotnn0 44351 iooabslt 45451 limcrecl 45584 islpcn 45594 stirlinglem5 46033 |
Copyright terms: Public domain | W3C validator |