| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem22 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36535. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem22.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndvlem22.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndvlem22.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndvlem22.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem22.d | ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| knoppndvlem22.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| knoppndvlem22.h | ⊢ (𝜑 → 𝐻 ∈ ℝ) |
| knoppndvlem22.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem22.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem22 | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem22.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 2 | knoppndvlem22.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | knoppndvlem22.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ+) | |
| 4 | knoppndvlem22.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 5 | knoppndvlem22.1 | . . . 4 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 6 | 1, 2, 5 | knoppndvlem20 36532 | . . 3 ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
| 7 | 1, 2, 3, 4, 6, 5 | knoppndvlem18 36530 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))) |
| 8 | knoppndvlem22.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 9 | knoppndvlem22.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 10 | knoppndvlem22.w | . . 3 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 11 | eqid 2737 | . . 3 ⊢ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) | |
| 12 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐶 ∈ (-1(,)1)) |
| 13 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐷 ∈ ℝ+) |
| 14 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ∈ ℝ+) |
| 15 | knoppndvlem22.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℝ) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐻 ∈ ℝ) |
| 17 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑗 ∈ ℕ0) | |
| 18 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑁 ∈ ℕ) |
| 19 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 1 < (𝑁 · (abs‘𝐶))) |
| 20 | simprrl 781 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷) | |
| 21 | simprrr 782 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))) | |
| 22 | 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21 | knoppndvlem21 36533 | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| 23 | 7, 22 | rexlimddv 3161 | 1 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 1c1 11156 + caddc 11158 · cmul 11160 < clt 11295 ≤ cle 11296 − cmin 11492 -cneg 11493 / cdiv 11920 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ℝ+crp 13034 (,)cioo 13387 ⌊cfl 13830 ↑cexp 14102 abscabs 15273 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-ulm 26420 |
| This theorem is referenced by: knoppndv 36535 |
| Copyright terms: Public domain | W3C validator |