Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem22 Structured version   Visualization version   GIF version

Theorem knoppndvlem22 36507
Description: Lemma for knoppndv 36508. (Contributed by Asger C. Ipsen, 19-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem22.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem22.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem22.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem22.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem22.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem22.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem22.h (𝜑𝐻 ∈ ℝ)
knoppndvlem22.n (𝜑𝑁 ∈ ℕ)
knoppndvlem22.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem22 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑤,𝑦   𝐷,𝑎,𝑏   𝐷,𝑖,𝑛,𝑤,𝑦   𝐸,𝑎,𝑏   𝑖,𝐸,𝑛,𝑤,𝑦   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁,𝑖,𝑤   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑎,𝑏)   𝐷(𝑥)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem22
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem22.c . . 3 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem22.n . . 3 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem22.d . . 3 (𝜑𝐷 ∈ ℝ+)
4 knoppndvlem22.e . . 3 (𝜑𝐸 ∈ ℝ+)
5 knoppndvlem22.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
61, 2, 5knoppndvlem20 36505 . . 3 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
71, 2, 3, 4, 6, 5knoppndvlem18 36503 . 2 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))
8 knoppndvlem22.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
9 knoppndvlem22.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
10 knoppndvlem22.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
11 eqid 2729 . . 3 (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
121adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐶 ∈ (-1(,)1))
133adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐷 ∈ ℝ+)
144adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ∈ ℝ+)
15 knoppndvlem22.h . . . 4 (𝜑𝐻 ∈ ℝ)
1615adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐻 ∈ ℝ)
17 simprl 770 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑗 ∈ ℕ0)
182adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑁 ∈ ℕ)
195adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 1 < (𝑁 · (abs‘𝐶)))
20 simprrl 780 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
21 simprrr 781 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
228, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21knoppndvlem21 36506 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
237, 22rexlimddv 3136 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  +crp 12893  (,)cioo 13248  cfl 13694  cexp 13968  abscabs 15141  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ulm 26284
This theorem is referenced by:  knoppndv  36508
  Copyright terms: Public domain W3C validator