Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem22 Structured version   Visualization version   GIF version

Theorem knoppndvlem22 36516
Description: Lemma for knoppndv 36517. (Contributed by Asger C. Ipsen, 19-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem22.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem22.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem22.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem22.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem22.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem22.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem22.h (𝜑𝐻 ∈ ℝ)
knoppndvlem22.n (𝜑𝑁 ∈ ℕ)
knoppndvlem22.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem22 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑤,𝑦   𝐷,𝑎,𝑏   𝐷,𝑖,𝑛,𝑤,𝑦   𝐸,𝑎,𝑏   𝑖,𝐸,𝑛,𝑤,𝑦   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁,𝑖,𝑤   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑎,𝑏)   𝐷(𝑥)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem22
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem22.c . . 3 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem22.n . . 3 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem22.d . . 3 (𝜑𝐷 ∈ ℝ+)
4 knoppndvlem22.e . . 3 (𝜑𝐸 ∈ ℝ+)
5 knoppndvlem22.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
61, 2, 5knoppndvlem20 36514 . . 3 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
71, 2, 3, 4, 6, 5knoppndvlem18 36512 . 2 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))
8 knoppndvlem22.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
9 knoppndvlem22.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
10 knoppndvlem22.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
11 eqid 2735 . . 3 (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
121adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐶 ∈ (-1(,)1))
133adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐷 ∈ ℝ+)
144adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ∈ ℝ+)
15 knoppndvlem22.h . . . 4 (𝜑𝐻 ∈ ℝ)
1615adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐻 ∈ ℝ)
17 simprl 771 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑗 ∈ ℕ0)
182adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑁 ∈ ℕ)
195adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 1 < (𝑁 · (abs‘𝐶)))
20 simprrl 781 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
21 simprrr 782 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
228, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21knoppndvlem21 36515 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
237, 22rexlimddv 3159 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  +crp 13032  (,)cioo 13384  cfl 13827  cexp 14099  abscabs 15270  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ulm 26435
This theorem is referenced by:  knoppndv  36517
  Copyright terms: Public domain W3C validator