Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmlnop0iHIL | Structured version Visualization version GIF version |
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmlnop0.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
nmlnop0iHIL | ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmlnop0.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
2 | eqid 2739 | . . . 4 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | eqid 2739 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
4 | 2, 3 | hhnmoi 30272 | . . 3 ⊢ normop = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | eqid 2739 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 0op 〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 0op 〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
6 | 2, 5 | hh0oi 30274 | . . 3 ⊢ 0hop = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 0op 〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
7 | eqid 2739 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 LnOp 〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 LnOp 〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
8 | 2, 7 | hhlnoi 30271 | . . 3 ⊢ LinOp = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 LnOp 〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 2 | hhnv 29536 | . . 3 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
10 | 4, 6, 8, 9, 9 | nmlno0i 29165 | . 2 ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop )) |
11 | 1, 10 | ax-mp 5 | 1 ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2107 〈cop 4568 ‘cfv 6437 (class class class)co 7284 0cc0 10880 LnOp clno 29111 normOpOLD cnmoo 29112 0op c0o 29114 +ℎ cva 29291 ·ℎ csm 29292 normℎcno 29294 0hop ch0o 29314 normopcnop 29316 LinOpclo 29318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cc 10200 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 ax-hilex 29370 ax-hfvadd 29371 ax-hvcom 29372 ax-hvass 29373 ax-hv0cl 29374 ax-hvaddid 29375 ax-hfvmul 29376 ax-hvmulid 29377 ax-hvmulass 29378 ax-hvdistr1 29379 ax-hvdistr2 29380 ax-hvmul0 29381 ax-hfi 29450 ax-his1 29453 ax-his2 29454 ax-his3 29455 ax-his4 29456 ax-hcompl 29573 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-oadd 8310 df-omul 8311 df-er 8507 df-map 8626 df-pm 8627 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-acn 9709 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-fl 13521 df-seq 13731 df-exp 13792 df-hash 14054 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-clim 15206 df-rlim 15207 df-sum 15407 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-mulg 18710 df-cntz 18932 df-cmn 19397 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-fbas 20603 df-fg 20604 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cld 22179 df-ntr 22180 df-cls 22181 df-nei 22258 df-cn 22387 df-cnp 22388 df-lm 22389 df-haus 22475 df-tx 22722 df-hmeo 22915 df-fil 23006 df-fm 23098 df-flim 23099 df-flf 23100 df-xms 23482 df-ms 23483 df-tms 23484 df-cfil 24428 df-cau 24429 df-cmet 24430 df-grpo 28864 df-gid 28865 df-ginv 28866 df-gdiv 28867 df-ablo 28916 df-vc 28930 df-nv 28963 df-va 28966 df-ba 28967 df-sm 28968 df-0v 28969 df-vs 28970 df-nmcv 28971 df-ims 28972 df-dip 29072 df-ssp 29093 df-lno 29115 df-nmoo 29116 df-0o 29118 df-ph 29184 df-cbn 29234 df-hnorm 29339 df-hba 29340 df-hvsub 29342 df-hlim 29343 df-hcau 29344 df-sh 29578 df-ch 29592 df-oc 29623 df-ch0 29624 df-shs 29679 df-pjh 29766 df-h0op 30119 df-nmop 30210 df-lnop 30212 |
This theorem is referenced by: nmlnopgt0i 30368 nmlnop0 30369 lnopco0i 30375 nmopcoi 30466 nmopcoadj0i 30474 |
Copyright terms: Public domain | W3C validator |