![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqrtcld | Structured version Visualization version GIF version |
Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | resqrtcl 14371 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 581 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 class class class wbr 4873 ‘cfv 6123 ℝcr 10251 0cc0 10252 ≤ cle 10392 √csqrt 14350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-seq 13096 df-exp 13155 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 |
This theorem is referenced by: isprm7 15791 nonsq 15838 ipcau2 23402 tcphcphlem1 23403 tcphcph 23405 rrxcph 23560 trirn 23568 rrxmet 23576 rrxdstprj1 23577 minveclem3b 23596 atans2 25071 chpub 25358 bposlem4 25425 bposlem5 25426 bposlem6 25427 bposlem9 25430 chpchtlim 25581 axsegconlem4 26219 ax5seglem3 26230 normf 28535 normgt0 28539 sqsscirc1 30499 hgt750lemd 31275 hgt750lem 31278 hgt750leme 31285 tgoldbachgtde 31287 sin2h 33942 cos2h 33943 dvasin 34039 areacirclem4 34046 areacirclem5 34047 areacirc 34048 rrnmet 34170 rrndstprj1 34171 rrndstprj2 34172 rrnequiv 34176 rrntotbnd 34177 pellexlem2 38238 pellexlem5 38241 pell14qrgt0 38267 pell1qrge1 38278 stirlingr 41101 rrndistlt 41301 qndenserrnbllem 41305 hoiqssbllem2 41631 sqrtpwpw2p 42280 |
Copyright terms: Public domain | W3C validator |