| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resqrtcld | Structured version Visualization version GIF version | ||
| Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| resqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | resqrtcl 15270 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 ℝcr 11126 0cc0 11127 ≤ cle 11268 √csqrt 15250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 |
| This theorem is referenced by: isprm7 16725 nonsq 16776 ipcau2 25184 tcphcphlem1 25185 tcphcph 25187 rrxcph 25342 trirn 25350 rrxmet 25358 rrxdstprj1 25359 minveclem3b 25378 atans2 26891 chpub 27181 bposlem4 27248 bposlem5 27249 bposlem6 27250 bposlem9 27253 chpchtlim 27440 axsegconlem4 28845 ax5seglem3 28856 normf 31050 normgt0 31054 iconstr 33746 constrresqrtcl 33757 sqsscirc1 33885 hgt750lemd 34626 hgt750lem 34629 hgt750leme 34636 tgoldbachgtde 34638 sin2h 37580 cos2h 37581 dvasin 37674 areacirclem4 37681 areacirclem5 37682 areacirc 37683 rrnmet 37799 rrndstprj1 37800 rrndstprj2 37801 rrnequiv 37805 rrntotbnd 37806 aks6d1c2lem4 42086 aks6d1c2 42089 aks6d1c6lem4 42132 aks6d1c7lem1 42139 aks6d1c7lem2 42140 pellexlem2 42800 pellexlem5 42803 pell14qrgt0 42829 pell1qrge1 42840 sqrtcvallem3 43609 sqrtcvallem5 43611 sqrtcval 43612 stirlingr 46067 rrndistlt 46267 qndenserrnbllem 46271 hoiqssbllem2 46600 sqrtnegnre 47284 sqrtpwpw2p 47500 requad01 47583 requad2 47585 ehl2eudis0lt 48654 inlinecirc02plem 48714 |
| Copyright terms: Public domain | W3C validator |