![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqrtcld | Structured version Visualization version GIF version |
Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | resqrtcl 15288 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 ℝcr 11151 0cc0 11152 ≤ cle 11293 √csqrt 15268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 |
This theorem is referenced by: isprm7 16741 nonsq 16792 ipcau2 25281 tcphcphlem1 25282 tcphcph 25284 rrxcph 25439 trirn 25447 rrxmet 25455 rrxdstprj1 25456 minveclem3b 25475 atans2 26988 chpub 27278 bposlem4 27345 bposlem5 27346 bposlem6 27347 bposlem9 27350 chpchtlim 27537 axsegconlem4 28949 ax5seglem3 28960 normf 31151 normgt0 31155 sqsscirc1 33868 hgt750lemd 34641 hgt750lem 34644 hgt750leme 34651 tgoldbachgtde 34653 sin2h 37596 cos2h 37597 dvasin 37690 areacirclem4 37697 areacirclem5 37698 areacirc 37699 rrnmet 37815 rrndstprj1 37816 rrndstprj2 37817 rrnequiv 37821 rrntotbnd 37822 aks6d1c2lem4 42108 aks6d1c2 42111 aks6d1c6lem4 42154 aks6d1c7lem1 42161 aks6d1c7lem2 42162 pellexlem2 42817 pellexlem5 42820 pell14qrgt0 42846 pell1qrge1 42857 sqrtcvallem3 43627 sqrtcvallem5 43629 sqrtcval 43630 stirlingr 46045 rrndistlt 46245 qndenserrnbllem 46249 hoiqssbllem2 46578 sqrtnegnre 47256 sqrtpwpw2p 47462 requad01 47545 requad2 47547 ehl2eudis0lt 48575 inlinecirc02plem 48635 |
Copyright terms: Public domain | W3C validator |