MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrtcld Structured version   Visualization version   GIF version

Theorem resqrtcld 15466
Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
resqrcld.1 (𝜑𝐴 ∈ ℝ)
resqrcld.2 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrtcld (𝜑 → (√‘𝐴) ∈ ℝ)

Proof of Theorem resqrtcld
StepHypRef Expression
1 resqrcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 resqrcld.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 resqrtcl 15302 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
41, 2, 3syl2anc 583 1 (𝜑 → (√‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  cfv 6573  cr 11183  0cc0 11184  cle 11325  csqrt 15282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284
This theorem is referenced by:  isprm7  16755  nonsq  16806  ipcau2  25287  tcphcphlem1  25288  tcphcph  25290  rrxcph  25445  trirn  25453  rrxmet  25461  rrxdstprj1  25462  minveclem3b  25481  atans2  26992  chpub  27282  bposlem4  27349  bposlem5  27350  bposlem6  27351  bposlem9  27354  chpchtlim  27541  axsegconlem4  28953  ax5seglem3  28964  normf  31155  normgt0  31159  sqsscirc1  33854  hgt750lemd  34625  hgt750lem  34628  hgt750leme  34635  tgoldbachgtde  34637  sin2h  37570  cos2h  37571  dvasin  37664  areacirclem4  37671  areacirclem5  37672  areacirc  37673  rrnmet  37789  rrndstprj1  37790  rrndstprj2  37791  rrnequiv  37795  rrntotbnd  37796  aks6d1c2lem4  42084  aks6d1c2  42087  aks6d1c6lem4  42130  aks6d1c7lem1  42137  aks6d1c7lem2  42138  pellexlem2  42786  pellexlem5  42789  pell14qrgt0  42815  pell1qrge1  42826  sqrtcvallem3  43600  sqrtcvallem5  43602  sqrtcval  43603  stirlingr  46011  rrndistlt  46211  qndenserrnbllem  46215  hoiqssbllem2  46544  sqrtnegnre  47222  sqrtpwpw2p  47412  requad01  47495  requad2  47497  ehl2eudis0lt  48460  inlinecirc02plem  48520
  Copyright terms: Public domain W3C validator