| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrtge0d | Structured version Visualization version GIF version | ||
| Description: The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| sqrtge0d | ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | sqrtge0 15174 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 ℝcr 11015 0cc0 11016 ≤ cle 11157 √csqrt 15150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 |
| This theorem is referenced by: nonsq 16680 ipcau2 25171 tcphcphlem1 25172 trirn 25337 rrxdstprj1 25346 minveclem3b 25365 atans2 26878 chpub 27168 bposlem6 27237 axsegconlem5 28910 ax5seglem3 28920 minvecolem5 30872 normge0 31117 sin2h 37660 cos2h 37661 areacirclem5 37762 areacirc 37763 rrndstprj1 37880 rrndstprj2 37881 rrnequiv 37885 rrntotbnd 37886 aks6d1c2lem4 42230 aks6d1c2 42233 aks6d1c6lem4 42276 aks6d1c7lem1 42283 aks6d1c7lem2 42284 pellexlem2 42937 pell1qrge1 42977 sqrtcval 43748 ehl2eudis0lt 48841 |
| Copyright terms: Public domain | W3C validator |