Step | Hyp | Ref
| Expression |
1 | | ovexd 7397 |
. . . . 5
β’ (β€
β (2[,)+β) β V) |
2 | | 2re 12234 |
. . . . . . . . . . . 12
β’ 2 β
β |
3 | | elicopnf 13369 |
. . . . . . . . . . . 12
β’ (2 β
β β (π₯ β
(2[,)+β) β (π₯
β β β§ 2 β€ π₯))) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . . . . 11
β’ (π₯ β (2[,)+β) β
(π₯ β β β§ 2
β€ π₯)) |
5 | 4 | biimpi 215 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β
(π₯ β β β§ 2
β€ π₯)) |
6 | 5 | simpld 496 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
π₯ β
β) |
7 | | 0red 11165 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β 0
β β) |
8 | 2 | a1i 11 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β 2
β β) |
9 | | 2pos 12263 |
. . . . . . . . . . 11
β’ 0 <
2 |
10 | 9 | a1i 11 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β 0
< 2) |
11 | 5 | simprd 497 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β 2
β€ π₯) |
12 | 7, 8, 6, 10, 11 | ltletrd 11322 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β 0
< π₯) |
13 | 6, 12 | elrpd 12961 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
π₯ β
β+) |
14 | | ppinncl 26539 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ 2 β€
π₯) β
(Οβπ₯)
β β) |
15 | 14 | nnrpd 12962 |
. . . . . . . . . 10
β’ ((π₯ β β β§ 2 β€
π₯) β
(Οβπ₯)
β β+) |
16 | 5, 15 | syl 17 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(Οβπ₯)
β β+) |
17 | | 1red 11163 |
. . . . . . . . . . 11
β’ (π₯ β (2[,)+β) β 1
β β) |
18 | | 1lt2 12331 |
. . . . . . . . . . . 12
β’ 1 <
2 |
19 | 18 | a1i 11 |
. . . . . . . . . . 11
β’ (π₯ β (2[,)+β) β 1
< 2) |
20 | 17, 8, 6, 19, 11 | ltletrd 11322 |
. . . . . . . . . 10
β’ (π₯ β (2[,)+β) β 1
< π₯) |
21 | 6, 20 | rplogcld 26000 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(logβπ₯) β
β+) |
22 | 16, 21 | rpmulcld 12980 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
((Οβπ₯)
Β· (logβπ₯))
β β+) |
23 | 13, 22 | rpdivcld 12981 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β
(π₯ /
((Οβπ₯)
Β· (logβπ₯)))
β β+) |
24 | 23 | rpcnd 12966 |
. . . . . 6
β’ (π₯ β (2[,)+β) β
(π₯ /
((Οβπ₯)
Β· (logβπ₯)))
β β) |
25 | 24 | adantl 483 |
. . . . 5
β’
((β€ β§ π₯
β (2[,)+β)) β (π₯ / ((Οβπ₯) Β· (logβπ₯))) β β) |
26 | | chtrpcl 26540 |
. . . . . . . . 9
β’ ((π₯ β β β§ 2 β€
π₯) β
(ΞΈβπ₯) β
β+) |
27 | 5, 26 | syl 17 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
(ΞΈβπ₯) β
β+) |
28 | 22, 27 | rpdivcld 12981 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β
(((Οβπ₯)
Β· (logβπ₯)) /
(ΞΈβπ₯)) β
β+) |
29 | 28 | rpcnd 12966 |
. . . . . 6
β’ (π₯ β (2[,)+β) β
(((Οβπ₯)
Β· (logβπ₯)) /
(ΞΈβπ₯)) β
β) |
30 | 29 | adantl 483 |
. . . . 5
β’
((β€ β§ π₯
β (2[,)+β)) β (((Οβπ₯) Β· (logβπ₯)) / (ΞΈβπ₯)) β β) |
31 | 6 | recnd 11190 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
π₯ β
β) |
32 | 21 | rpcnd 12966 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(logβπ₯) β
β) |
33 | 16 | rpcnd 12966 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(Οβπ₯)
β β) |
34 | 21 | rpne0d 12969 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(logβπ₯) β
0) |
35 | 16 | rpne0d 12969 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
(Οβπ₯) β
0) |
36 | 31, 32, 33, 34, 35 | divdiv1d 11969 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
((π₯ / (logβπ₯)) / (Οβπ₯)) = (π₯ / ((logβπ₯) Β· (Οβπ₯)))) |
37 | 32, 33 | mulcomd 11183 |
. . . . . . . . 9
β’ (π₯ β (2[,)+β) β
((logβπ₯) Β·
(Οβπ₯)) =
((Οβπ₯)
Β· (logβπ₯))) |
38 | 37 | oveq2d 7378 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
(π₯ / ((logβπ₯) Β·
(Οβπ₯))) =
(π₯ /
((Οβπ₯)
Β· (logβπ₯)))) |
39 | 36, 38 | eqtrd 2777 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β
((π₯ / (logβπ₯)) / (Οβπ₯)) = (π₯ / ((Οβπ₯) Β· (logβπ₯)))) |
40 | 39 | mpteq2ia 5213 |
. . . . . 6
β’ (π₯ β (2[,)+β) β¦
((π₯ / (logβπ₯)) / (Οβπ₯))) = (π₯ β (2[,)+β) β¦ (π₯ / ((Οβπ₯) Β· (logβπ₯)))) |
41 | 40 | a1i 11 |
. . . . 5
β’ (β€
β (π₯ β
(2[,)+β) β¦ ((π₯
/ (logβπ₯)) /
(Οβπ₯))) =
(π₯ β (2[,)+β)
β¦ (π₯ /
((Οβπ₯)
Β· (logβπ₯))))) |
42 | 27 | rpcnd 12966 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
(ΞΈβπ₯) β
β) |
43 | 22 | rpcnd 12966 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
((Οβπ₯)
Β· (logβπ₯))
β β) |
44 | 27 | rpne0d 12969 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
(ΞΈβπ₯) β
0) |
45 | 22 | rpne0d 12969 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
((Οβπ₯)
Β· (logβπ₯))
β 0) |
46 | 42, 43, 44, 45 | recdivd 11955 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β (1
/ ((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))) =
(((Οβπ₯)
Β· (logβπ₯)) /
(ΞΈβπ₯))) |
47 | 46 | mpteq2ia 5213 |
. . . . . 6
β’ (π₯ β (2[,)+β) β¦
(1 / ((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))))
= (π₯ β (2[,)+β)
β¦ (((Οβπ₯) Β· (logβπ₯)) / (ΞΈβπ₯))) |
48 | 47 | a1i 11 |
. . . . 5
β’ (β€
β (π₯ β
(2[,)+β) β¦ (1 / ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))))) = (π₯ β (2[,)+β) β¦
(((Οβπ₯)
Β· (logβπ₯)) /
(ΞΈβπ₯)))) |
49 | 1, 25, 30, 41, 48 | offval2 7642 |
. . . 4
β’ (β€
β ((π₯ β
(2[,)+β) β¦ ((π₯
/ (logβπ₯)) /
(Οβπ₯)))
βf Β· (π₯ β (2[,)+β) β¦ (1 /
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯))))))
= (π₯ β (2[,)+β)
β¦ ((π₯ /
((Οβπ₯)
Β· (logβπ₯)))
Β· (((Οβπ₯) Β· (logβπ₯)) / (ΞΈβπ₯))))) |
50 | 31, 43, 42, 45, 44 | dmdcan2d 11968 |
. . . . 5
β’ (π₯ β (2[,)+β) β
((π₯ /
((Οβπ₯)
Β· (logβπ₯)))
Β· (((Οβπ₯) Β· (logβπ₯)) / (ΞΈβπ₯))) = (π₯ / (ΞΈβπ₯))) |
51 | 50 | mpteq2ia 5213 |
. . . 4
β’ (π₯ β (2[,)+β) β¦
((π₯ /
((Οβπ₯)
Β· (logβπ₯)))
Β· (((Οβπ₯) Β· (logβπ₯)) / (ΞΈβπ₯)))) = (π₯ β (2[,)+β) β¦ (π₯ / (ΞΈβπ₯))) |
52 | 49, 51 | eqtrdi 2793 |
. . 3
β’ (β€
β ((π₯ β
(2[,)+β) β¦ ((π₯
/ (logβπ₯)) /
(Οβπ₯)))
βf Β· (π₯ β (2[,)+β) β¦ (1 /
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯))))))
= (π₯ β (2[,)+β)
β¦ (π₯ /
(ΞΈβπ₯)))) |
53 | | chebbnd1 26836 |
. . . 4
β’ (π₯ β (2[,)+β) β¦
((π₯ / (logβπ₯)) / (Οβπ₯))) β
π(1) |
54 | | ax-1cn 11116 |
. . . . . . 7
β’ 1 β
β |
55 | 54 | a1i 11 |
. . . . . 6
β’
((β€ β§ π₯
β (2[,)+β)) β 1 β β) |
56 | 27, 22 | rpdivcld 12981 |
. . . . . . . 8
β’ (π₯ β (2[,)+β) β
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))
β β+) |
57 | 56 | adantl 483 |
. . . . . . 7
β’
((β€ β§ π₯
β (2[,)+β)) β ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))) β
β+) |
58 | 57 | rpcnd 12966 |
. . . . . 6
β’
((β€ β§ π₯
β (2[,)+β)) β ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))) β β) |
59 | 6 | ssriv 3953 |
. . . . . . . 8
β’
(2[,)+β) β β |
60 | | rlimconst 15433 |
. . . . . . . 8
β’
(((2[,)+β) β β β§ 1 β β) β (π₯ β (2[,)+β) β¦
1) βπ 1) |
61 | 59, 54, 60 | mp2an 691 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β¦
1) βπ 1 |
62 | 61 | a1i 11 |
. . . . . 6
β’ (β€
β (π₯ β
(2[,)+β) β¦ 1) βπ 1) |
63 | | chtppilim 26839 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β¦
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯))))
βπ 1 |
64 | 63 | a1i 11 |
. . . . . 6
β’ (β€
β (π₯ β
(2[,)+β) β¦ ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯)))) βπ
1) |
65 | | ax-1ne0 11127 |
. . . . . . 7
β’ 1 β
0 |
66 | 65 | a1i 11 |
. . . . . 6
β’ (β€
β 1 β 0) |
67 | 56 | rpne0d 12969 |
. . . . . . 7
β’ (π₯ β (2[,)+β) β
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))
β 0) |
68 | 67 | adantl 483 |
. . . . . 6
β’
((β€ β§ π₯
β (2[,)+β)) β ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))) β 0) |
69 | 55, 58, 62, 64, 66, 68 | rlimdiv 15537 |
. . . . 5
β’ (β€
β (π₯ β
(2[,)+β) β¦ (1 / ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))))) βπ (1 /
1)) |
70 | | rlimo1 15506 |
. . . . 5
β’ ((π₯ β (2[,)+β) β¦
(1 / ((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))))
βπ (1 / 1) β (π₯ β (2[,)+β) β¦ (1 /
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯)))))
β π(1)) |
71 | 69, 70 | syl 17 |
. . . 4
β’ (β€
β (π₯ β
(2[,)+β) β¦ (1 / ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))))) β π(1)) |
72 | | o1mul 15504 |
. . . 4
β’ (((π₯ β (2[,)+β) β¦
((π₯ / (logβπ₯)) / (Οβπ₯))) β π(1) β§
(π₯ β (2[,)+β)
β¦ (1 / ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯))))) β π(1)) β ((π₯ β (2[,)+β) β¦
((π₯ / (logβπ₯)) / (Οβπ₯))) βf Β·
(π₯ β (2[,)+β)
β¦ (1 / ((ΞΈβπ₯) / ((Οβπ₯) Β· (logβπ₯)))))) β π(1)) |
73 | 53, 71, 72 | sylancr 588 |
. . 3
β’ (β€
β ((π₯ β
(2[,)+β) β¦ ((π₯
/ (logβπ₯)) /
(Οβπ₯)))
βf Β· (π₯ β (2[,)+β) β¦ (1 /
((ΞΈβπ₯) /
((Οβπ₯)
Β· (logβπ₯))))))
β π(1)) |
74 | 52, 73 | eqeltrrd 2839 |
. 2
β’ (β€
β (π₯ β
(2[,)+β) β¦ (π₯ /
(ΞΈβπ₯))) β
π(1)) |
75 | 74 | mptru 1549 |
1
β’ (π₯ β (2[,)+β) β¦
(π₯ / (ΞΈβπ₯))) β
π(1) |