MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1lb Structured version   Visualization version   GIF version

Theorem chto1lb 27540
Description: The θ function is lower bounded by a linear term. Corollary of chebbnd1 27534. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chto1lb (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)

Proof of Theorem chto1lb
StepHypRef Expression
1 ovexd 7483 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 2re 12367 . . . . . . . . . . . 12 2 ∈ ℝ
3 elicopnf 13505 . . . . . . . . . . . 12 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
54biimpi 216 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 494 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
7 0red 11293 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
82a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
9 2pos 12396 . . . . . . . . . . 11 0 < 2
109a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 0 < 2)
115simprd 495 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11450 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
136, 12elrpd 13096 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
14 ppinncl 27235 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
1514nnrpd 13097 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℝ+)
165, 15syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
17 1red 11291 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
18 1lt2 12464 . . . . . . . . . . . 12 1 < 2
1918a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 1 < 2)
2017, 8, 6, 19, 11ltletrd 11450 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
216, 20rplogcld 26689 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
2216, 21rpmulcld 13115 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2313, 22rpdivcld 13116 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (𝑥 / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
2423rpcnd 13101 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (𝑥 / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
2524adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
26 chtrpcl 27236 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
275, 26syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
2822, 27rpdivcld 13116 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ+)
2928rpcnd 13101 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℂ)
3029adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℂ)
316recnd 11318 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
3221rpcnd 13101 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℂ)
3316rpcnd 13101 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
3421rpne0d 13104 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ≠ 0)
3516rpne0d 13104 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ≠ 0)
3631, 32, 33, 34, 35divdiv1d 12101 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) = (𝑥 / ((log‘𝑥) · (π𝑥))))
3732, 33mulcomd 11311 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → ((log‘𝑥) · (π𝑥)) = ((π𝑥) · (log‘𝑥)))
3837oveq2d 7464 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 / ((log‘𝑥) · (π𝑥))) = (𝑥 / ((π𝑥) · (log‘𝑥))))
3936, 38eqtrd 2780 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) = (𝑥 / ((π𝑥) · (log‘𝑥))))
4039mpteq2ia 5269 . . . . . 6 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / ((π𝑥) · (log‘𝑥))))
4140a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / ((π𝑥) · (log‘𝑥)))))
4227rpcnd 13101 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
4322rpcnd 13101 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
4427rpne0d 13104 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≠ 0)
4522rpne0d 13104 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ≠ 0)
4642, 43, 44, 45recdivd 12087 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
4746mpteq2ia 5269 . . . . . 6 (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
4847a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
491, 25, 30, 41, 48offval2 7734 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / ((π𝑥) · (log‘𝑥))) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
5031, 43, 42, 45, 44dmdcan2d 12100 . . . . 5 (𝑥 ∈ (2[,)+∞) → ((𝑥 / ((π𝑥) · (log‘𝑥))) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (𝑥 / (θ‘𝑥)))
5150mpteq2ia 5269 . . . 4 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / ((π𝑥) · (log‘𝑥))) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥)))
5249, 51eqtrdi 2796 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
53 chebbnd1 27534 . . . 4 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
54 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
5554a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5627, 22rpdivcld 13116 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5756adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5857rpcnd 13101 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
596ssriv 4012 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
60 rlimconst 15590 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
6159, 54, 60mp2an 691 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
63 chtppilim 27537 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6463a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
65 ax-1ne0 11253 . . . . . . 7 1 ≠ 0
6665a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6756rpne0d 13104 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6867adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6955, 58, 62, 64, 66, 68rlimdiv 15694 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
70 rlimo1 15663 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
7169, 70syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
72 o1mul 15661 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7353, 71, 72sylancr 586 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7452, 73eqeltrrd 2845 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1))
7574mptru 1544 1 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057  [,)cico 13409  𝑟 crli 15531  𝑂(1)co1 15532  logclog 26614  θccht 27152  πcppi 27155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-cht 27158  df-ppi 27161
This theorem is referenced by:  chpchtlim  27541
  Copyright terms: Public domain W3C validator