![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexmet | Structured version Visualization version GIF version |
Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
rexmet | ⊢ 𝐷 ∈ (∞Met‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . 3 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | remet 23113 | . 2 ⊢ 𝐷 ∈ (Met‘ℝ) |
3 | metxmet 22659 | . 2 ⊢ (𝐷 ∈ (Met‘ℝ) → 𝐷 ∈ (∞Met‘ℝ)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝐷 ∈ (∞Met‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 × cxp 5401 ↾ cres 5405 ∘ ccom 5407 ‘cfv 6185 ℝcr 10332 − cmin 10668 abscabs 14452 ∞Metcxmet 20244 Metcmet 20245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-xadd 12323 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-xmet 20252 df-met 20253 |
This theorem is referenced by: bl2ioo 23115 ioo2blex 23117 blssioo 23118 tgioo 23119 rehaus 23122 resubmet 23125 xrsmopn 23135 iccntr 23144 icccmplem3 23147 reconnlem2 23150 opnreen 23154 lebnumii 23285 opnmbllem 23917 lhop 24328 dvcnvre 24331 nmcvcn 28261 dya2icoseg2 31210 opnrebl 33218 opnrebl2 33219 ptrecube 34362 poimirlem29 34391 poimirlem30 34392 opnmbllem0 34398 ismrer1 34587 reheibor 34588 |
Copyright terms: Public domain | W3C validator |