| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppgoppchom | Structured version Visualization version GIF version | ||
| Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 21-Sep-2025.) |
| Ref | Expression |
|---|---|
| mndtccat.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
| mndtccat.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| oppgoppchom.d | ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) |
| oppgoppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppgoppchom.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| oppgoppchom.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) |
| oppgoppchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
| oppgoppchom.j | ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) |
| Ref | Expression |
|---|---|
| oppgoppchom | ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . 6 ⊢ (oppg‘𝑀) = (oppg‘𝑀) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | 1, 2 | oppgbas 19366 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘(oppg‘𝑀)) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(oppg‘𝑀))) |
| 5 | mndtccat.c | . . . . 5 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
| 6 | mndtccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 7 | oppgoppchom.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | 7, 8 | oppcbas 17757 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 10 | 9 | eqcomi 2745 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐶) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Base‘𝑂) = (Base‘𝐶)) |
| 12 | oppgoppchom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) | |
| 13 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) | |
| 14 | 5, 6, 11, 12, 12, 13 | mndtchom 49157 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑌) = (Base‘𝑀)) |
| 15 | oppgoppchom.d | . . . . 5 ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) | |
| 16 | 1 | oppgmnd 19369 | . . . . . 6 ⊢ (𝑀 ∈ Mnd → (oppg‘𝑀) ∈ Mnd) |
| 17 | 6, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppg‘𝑀) ∈ Mnd) |
| 18 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝐷)) | |
| 19 | oppgoppchom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) | |
| 20 | oppgoppchom.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) | |
| 21 | 15, 17, 18, 19, 19, 20 | mndtchom 49157 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘(oppg‘𝑀))) |
| 22 | 4, 14, 21 | 3eqtr4rd 2787 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝐶)𝑌)) |
| 23 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 24 | 23, 7 | oppchom 17754 | . . 3 ⊢ (𝑌(Hom ‘𝑂)𝑌) = (𝑌(Hom ‘𝐶)𝑌) |
| 25 | 22, 24 | eqtr4di 2794 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝑂)𝑌)) |
| 26 | oppgoppchom.j | . . 3 ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) | |
| 27 | 26 | oveqd 7446 | . 2 ⊢ (𝜑 → (𝑌𝐽𝑌) = (𝑌(Hom ‘𝑂)𝑌)) |
| 28 | 25, 27 | eqtr4d 2779 | 1 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 oppCatcoppc 17750 Mndcmnd 18743 oppgcoppg 19359 MndToCatcmndtc 49150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-tpos 8247 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-plusg 17306 df-hom 17317 df-cco 17318 df-0g 17482 df-oppc 17751 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-oppg 19360 df-mndtc 49151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |