| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppgoppchom | Structured version Visualization version GIF version | ||
| Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 21-Sep-2025.) |
| Ref | Expression |
|---|---|
| mndtccat.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
| mndtccat.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| oppgoppchom.d | ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) |
| oppgoppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppgoppchom.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| oppgoppchom.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) |
| oppgoppchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
| oppgoppchom.j | ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) |
| Ref | Expression |
|---|---|
| oppgoppchom | ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (oppg‘𝑀) = (oppg‘𝑀) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | 1, 2 | oppgbas 19290 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘(oppg‘𝑀)) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(oppg‘𝑀))) |
| 5 | mndtccat.c | . . . . 5 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
| 6 | mndtccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 7 | oppgoppchom.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | 7, 8 | oppcbas 17686 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 10 | 9 | eqcomi 2739 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐶) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Base‘𝑂) = (Base‘𝐶)) |
| 12 | oppgoppchom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) | |
| 13 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) | |
| 14 | 5, 6, 11, 12, 12, 13 | mndtchom 49577 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑌) = (Base‘𝑀)) |
| 15 | oppgoppchom.d | . . . . 5 ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) | |
| 16 | 1 | oppgmnd 19293 | . . . . . 6 ⊢ (𝑀 ∈ Mnd → (oppg‘𝑀) ∈ Mnd) |
| 17 | 6, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppg‘𝑀) ∈ Mnd) |
| 18 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝐷)) | |
| 19 | oppgoppchom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) | |
| 20 | oppgoppchom.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) | |
| 21 | 15, 17, 18, 19, 19, 20 | mndtchom 49577 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘(oppg‘𝑀))) |
| 22 | 4, 14, 21 | 3eqtr4rd 2776 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝐶)𝑌)) |
| 23 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 24 | 23, 7 | oppchom 17683 | . . 3 ⊢ (𝑌(Hom ‘𝑂)𝑌) = (𝑌(Hom ‘𝐶)𝑌) |
| 25 | 22, 24 | eqtr4di 2783 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝑂)𝑌)) |
| 26 | oppgoppchom.j | . . 3 ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) | |
| 27 | 26 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝑌𝐽𝑌) = (𝑌(Hom ‘𝑂)𝑌)) |
| 28 | 25, 27 | eqtr4d 2768 | 1 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 oppCatcoppc 17679 Mndcmnd 18668 oppgcoppg 19284 MndToCatcmndtc 49570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-hom 17251 df-cco 17252 df-0g 17411 df-oppc 17680 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-oppg 19285 df-mndtc 49571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |