| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppgoppchom | Structured version Visualization version GIF version | ||
| Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 21-Sep-2025.) |
| Ref | Expression |
|---|---|
| mndtccat.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
| mndtccat.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| oppgoppchom.d | ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) |
| oppgoppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppgoppchom.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| oppgoppchom.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) |
| oppgoppchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
| oppgoppchom.j | ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) |
| Ref | Expression |
|---|---|
| oppgoppchom | ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . 6 ⊢ (oppg‘𝑀) = (oppg‘𝑀) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | 1, 2 | oppgbas 19332 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘(oppg‘𝑀)) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(oppg‘𝑀))) |
| 5 | mndtccat.c | . . . . 5 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
| 6 | mndtccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 7 | oppgoppchom.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | 7, 8 | oppcbas 17728 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 10 | 9 | eqcomi 2744 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐶) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Base‘𝑂) = (Base‘𝐶)) |
| 12 | oppgoppchom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) | |
| 13 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) | |
| 14 | 5, 6, 11, 12, 12, 13 | mndtchom 49409 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑌) = (Base‘𝑀)) |
| 15 | oppgoppchom.d | . . . . 5 ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) | |
| 16 | 1 | oppgmnd 19335 | . . . . . 6 ⊢ (𝑀 ∈ Mnd → (oppg‘𝑀) ∈ Mnd) |
| 17 | 6, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppg‘𝑀) ∈ Mnd) |
| 18 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝐷)) | |
| 19 | oppgoppchom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) | |
| 20 | oppgoppchom.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) | |
| 21 | 15, 17, 18, 19, 19, 20 | mndtchom 49409 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘(oppg‘𝑀))) |
| 22 | 4, 14, 21 | 3eqtr4rd 2781 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝐶)𝑌)) |
| 23 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 24 | 23, 7 | oppchom 17725 | . . 3 ⊢ (𝑌(Hom ‘𝑂)𝑌) = (𝑌(Hom ‘𝐶)𝑌) |
| 25 | 22, 24 | eqtr4di 2788 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌(Hom ‘𝑂)𝑌)) |
| 26 | oppgoppchom.j | . . 3 ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) | |
| 27 | 26 | oveqd 7420 | . 2 ⊢ (𝜑 → (𝑌𝐽𝑌) = (𝑌(Hom ‘𝑂)𝑌)) |
| 28 | 25, 27 | eqtr4d 2773 | 1 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 oppCatcoppc 17721 Mndcmnd 18710 oppgcoppg 19326 MndToCatcmndtc 49402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-hom 17293 df-cco 17294 df-0g 17453 df-oppc 17722 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-oppg 19327 df-mndtc 49403 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |