Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppgoppcco Structured version   Visualization version   GIF version

Theorem oppgoppcco 49416
Description: The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
mndtccat.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtccat.m (𝜑𝑀 ∈ Mnd)
oppgoppchom.d (𝜑𝐷 = (MndToCat‘(oppg𝑀)))
oppgoppchom.o 𝑂 = (oppCat‘𝐶)
oppgoppchom.x (𝜑𝑋 ∈ (Base‘𝐷))
oppgoppchom.y (𝜑𝑌 ∈ (Base‘𝑂))
oppgoppcco.o (𝜑· = (comp‘𝐷))
oppgoppcco.x (𝜑 = (comp‘𝑂))
Assertion
Ref Expression
oppgoppcco (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (⟨𝑌, 𝑌 𝑌))

Proof of Theorem oppgoppcco
StepHypRef Expression
1 mndtccat.c . . . . 5 (𝜑𝐶 = (MndToCat‘𝑀))
2 mndtccat.m . . . . 5 (𝜑𝑀 ∈ Mnd)
3 oppgoppchom.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
4 eqid 2735 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
53, 4oppcbas 17728 . . . . . . 7 (Base‘𝐶) = (Base‘𝑂)
65eqcomi 2744 . . . . . 6 (Base‘𝑂) = (Base‘𝐶)
76a1i 11 . . . . 5 (𝜑 → (Base‘𝑂) = (Base‘𝐶))
8 oppgoppchom.y . . . . 5 (𝜑𝑌 ∈ (Base‘𝑂))
9 eqidd 2736 . . . . 5 (𝜑 → (comp‘𝐶) = (comp‘𝐶))
101, 2, 7, 8, 8, 8, 9mndtcco 49410 . . . 4 (𝜑 → (⟨𝑌, 𝑌⟩(comp‘𝐶)𝑌) = (+g𝑀))
1110tposeqd 8226 . . 3 (𝜑 → tpos (⟨𝑌, 𝑌⟩(comp‘𝐶)𝑌) = tpos (+g𝑀))
12 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
136, 12, 3, 8, 8, 8oppccofval 17726 . . 3 (𝜑 → (⟨𝑌, 𝑌⟩(comp‘𝑂)𝑌) = tpos (⟨𝑌, 𝑌⟩(comp‘𝐶)𝑌))
14 oppgoppchom.d . . . . 5 (𝜑𝐷 = (MndToCat‘(oppg𝑀)))
15 eqid 2735 . . . . . . 7 (oppg𝑀) = (oppg𝑀)
1615oppgmnd 19335 . . . . . 6 (𝑀 ∈ Mnd → (oppg𝑀) ∈ Mnd)
172, 16syl 17 . . . . 5 (𝜑 → (oppg𝑀) ∈ Mnd)
18 eqidd 2736 . . . . 5 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
19 oppgoppchom.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐷))
20 oppgoppcco.o . . . . 5 (𝜑· = (comp‘𝐷))
2114, 17, 18, 19, 19, 19, 20mndtcco 49410 . . . 4 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g‘(oppg𝑀)))
22 eqid 2735 . . . . 5 (+g𝑀) = (+g𝑀)
23 eqid 2735 . . . . 5 (+g‘(oppg𝑀)) = (+g‘(oppg𝑀))
2422, 15, 23oppgplusfval 19329 . . . 4 (+g‘(oppg𝑀)) = tpos (+g𝑀)
2521, 24eqtrdi 2786 . . 3 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = tpos (+g𝑀))
2611, 13, 253eqtr4rd 2781 . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (⟨𝑌, 𝑌⟩(comp‘𝑂)𝑌))
27 oppgoppcco.x . . 3 (𝜑 = (comp‘𝑂))
2827oveqd 7420 . 2 (𝜑 → (⟨𝑌, 𝑌 𝑌) = (⟨𝑌, 𝑌⟩(comp‘𝑂)𝑌))
2926, 28eqtr4d 2773 1 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (⟨𝑌, 𝑌 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cop 4607  cfv 6530  (class class class)co 7403  tpos ctpos 8222  Basecbs 17226  +gcplusg 17269  compcco 17281  oppCatcoppc 17721  Mndcmnd 18710  oppgcoppg 19326  MndToCatcmndtc 49402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-hom 17293  df-cco 17294  df-0g 17453  df-oppc 17722  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-oppg 19327  df-mndtc 49403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator