Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcd1 Structured version   Visualization version   GIF version

Theorem lcd1 41610
Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
lcd1.h 𝐻 = (LHyp‘𝐾)
lcd1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcd1.f 𝐹 = (Scalar‘𝑈)
lcd1.j 1 = (1r𝐹)
lcd1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcd1.s 𝑆 = (Scalar‘𝐶)
lcd1.i 𝐼 = (1r𝑆)
lcd1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcd1 (𝜑𝐼 = 1 )

Proof of Theorem lcd1
StepHypRef Expression
1 lcd1.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcd1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcd1.f . . . 4 𝐹 = (Scalar‘𝑈)
4 eqid 2730 . . . 4 (oppr𝐹) = (oppr𝐹)
5 lcd1.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 lcd1.s . . . 4 𝑆 = (Scalar‘𝐶)
7 lcd1.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 2, 3, 4, 5, 6, 7lcdsca 41600 . . 3 (𝜑𝑆 = (oppr𝐹))
98fveq2d 6865 . 2 (𝜑 → (1r𝑆) = (1r‘(oppr𝐹)))
10 lcd1.i . 2 𝐼 = (1r𝑆)
11 lcd1.j . . 3 1 = (1r𝐹)
124, 11oppr1 20266 . 2 1 = (1r‘(oppr𝐹))
139, 10, 123eqtr4g 2790 1 (𝜑𝐼 = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  Scalarcsca 17230  1rcur 20097  opprcoppr 20252  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  LCDualclcd 41587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lvec 21017  df-ldual 39124  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-dvech 41080  df-lcdual 41588
This theorem is referenced by:  lcdvsubval  41619  mapdpglem21  41693  mapdpglem30  41703  mapdpglem31  41704  hgmapval1  41894
  Copyright terms: Public domain W3C validator