![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcd1 | Structured version Visualization version GIF version |
Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
lcd1.h | β’ π» = (LHypβπΎ) |
lcd1.u | β’ π = ((DVecHβπΎ)βπ) |
lcd1.f | β’ πΉ = (Scalarβπ) |
lcd1.j | β’ 1 = (1rβπΉ) |
lcd1.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcd1.s | β’ π = (ScalarβπΆ) |
lcd1.i | β’ πΌ = (1rβπ) |
lcd1.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
lcd1 | β’ (π β πΌ = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcd1.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | lcd1.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
3 | lcd1.f | . . . 4 β’ πΉ = (Scalarβπ) | |
4 | eqid 2730 | . . . 4 β’ (opprβπΉ) = (opprβπΉ) | |
5 | lcd1.c | . . . 4 β’ πΆ = ((LCDualβπΎ)βπ) | |
6 | lcd1.s | . . . 4 β’ π = (ScalarβπΆ) | |
7 | lcd1.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lcdsca 40775 | . . 3 β’ (π β π = (opprβπΉ)) |
9 | 8 | fveq2d 6896 | . 2 β’ (π β (1rβπ) = (1rβ(opprβπΉ))) |
10 | lcd1.i | . 2 β’ πΌ = (1rβπ) | |
11 | lcd1.j | . . 3 β’ 1 = (1rβπΉ) | |
12 | 4, 11 | oppr1 20243 | . 2 β’ 1 = (1rβ(opprβπΉ)) |
13 | 9, 10, 12 | 3eqtr4g 2795 | 1 β’ (π β πΌ = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6544 Scalarcsca 17206 1rcur 20077 opprcoppr 20226 HLchlt 38525 LHypclh 39160 DVecHcdvh 40254 LCDualclcd 40762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-riotaBAD 38128 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-undef 8262 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-0g 17393 df-proset 18254 df-poset 18272 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-dvr 20294 df-drng 20504 df-lmod 20618 df-lvec 20860 df-ldual 38299 df-oposet 38351 df-ol 38353 df-oml 38354 df-covers 38441 df-ats 38442 df-atl 38473 df-cvlat 38497 df-hlat 38526 df-llines 38674 df-lplanes 38675 df-lvols 38676 df-lines 38677 df-psubsp 38679 df-pmap 38680 df-padd 38972 df-lhyp 39164 df-laut 39165 df-ldil 39280 df-ltrn 39281 df-trl 39335 df-tendo 39931 df-edring 39933 df-dvech 40255 df-lcdual 40763 |
This theorem is referenced by: lcdvsubval 40794 mapdpglem21 40868 mapdpglem30 40878 mapdpglem31 40879 hgmapval1 41069 |
Copyright terms: Public domain | W3C validator |