MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcshid Structured version   Visualization version   GIF version

Theorem cshwcshid 14192
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 27802 and erclwwlknsym 27852. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcshid.1 (𝜑𝑦 ∈ Word 𝑉)
cshwcshid.2 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
Assertion
Ref Expression
cshwcshid (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Distinct variable group:   𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem cshwcshid
StepHypRef Expression
1 fznn0sub2 13017 . . . . . . 7 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦)))
2 oveq2 7167 . . . . . . . 8 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
32eleq2d 2901 . . . . . . 7 ((♯‘𝑥) = (♯‘𝑦) → (((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ↔ ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦))))
41, 3syl5ibr 248 . . . . . 6 ((♯‘𝑥) = (♯‘𝑦) → (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
5 cshwcshid.2 . . . . . 6 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
64, 5syl11 33 . . . . 5 (𝑚 ∈ (0...(♯‘𝑦)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
76adantr 483 . . . 4 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
87impcom 410 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)))
9 cshwcshid.1 . . . . . . . 8 (𝜑𝑦 ∈ Word 𝑉)
10 simpl 485 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 ∈ Word 𝑉)
11 elfzelz 12911 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
1211adantl 484 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑚 ∈ ℤ)
13 elfz2nn0 13001 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)))
14 nn0z 12008 . . . . . . . . . . . . 13 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℤ)
15 nn0z 12008 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
16 zsubcl 12027 . . . . . . . . . . . . 13 (((♯‘𝑦) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1714, 15, 16syl2anr 598 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
18173adant3 1128 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1913, 18sylbi 219 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2019adantl 484 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2110, 12, 203jca 1124 . . . . . . . 8 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
229, 21sylan 582 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
23 2cshw 14178 . . . . . . 7 ((𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
2422, 23syl 17 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
25 nn0cn 11910 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
26 nn0cn 11910 . . . . . . . . . . . 12 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℂ)
2725, 26anim12i 614 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
28273adant3 1128 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
2913, 28sylbi 219 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
30 pncan3 10897 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3129, 30syl 17 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3231adantl 484 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3332oveq2d 7175 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))) = (𝑦 cyclShift (♯‘𝑦)))
34 cshwn 14162 . . . . . . . 8 (𝑦 ∈ Word 𝑉 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
359, 34syl 17 . . . . . . 7 (𝜑 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3635adantr 483 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3724, 33, 363eqtrrd 2864 . . . . 5 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
3837adantrr 715 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
39 oveq1 7166 . . . . . . 7 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
4039eqeq2d 2835 . . . . . 6 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4140adantl 484 . . . . 5 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4241adantl 484 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4338, 42mpbird 259 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
44 oveq2 7167 . . . 4 (𝑛 = ((♯‘𝑦) − 𝑚) → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
4544rspceeqv 3641 . . 3 ((((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ∧ 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
468, 43, 45syl2anc 586 . 2 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
4746ex 415 1 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540   + caddc 10543  cle 10679  cmin 10873  0cn0 11900  cz 11984  ...cfz 12895  chash 13693  Word cword 13864   cyclShift ccsh 14153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-hash 13694  df-word 13865  df-concat 13926  df-substr 14006  df-pfx 14036  df-csh 14154
This theorem is referenced by:  erclwwlksym  27802  erclwwlknsym  27852
  Copyright terms: Public domain W3C validator