MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcshid Structured version   Visualization version   GIF version

Theorem cshwcshid 14876
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 30053 and erclwwlknsym 30102. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcshid.1 (𝜑𝑦 ∈ Word 𝑉)
cshwcshid.2 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
Assertion
Ref Expression
cshwcshid (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Distinct variable group:   𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem cshwcshid
StepHypRef Expression
1 fznn0sub2 13692 . . . . . . 7 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦)))
2 oveq2 7456 . . . . . . . 8 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
32eleq2d 2830 . . . . . . 7 ((♯‘𝑥) = (♯‘𝑦) → (((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ↔ ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦))))
41, 3imbitrrid 246 . . . . . 6 ((♯‘𝑥) = (♯‘𝑦) → (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
5 cshwcshid.2 . . . . . 6 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
64, 5syl11 33 . . . . 5 (𝑚 ∈ (0...(♯‘𝑦)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
76adantr 480 . . . 4 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
87impcom 407 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)))
9 cshwcshid.1 . . . . . . . 8 (𝜑𝑦 ∈ Word 𝑉)
10 simpl 482 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 ∈ Word 𝑉)
11 elfzelz 13584 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
1211adantl 481 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑚 ∈ ℤ)
13 elfz2nn0 13675 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)))
14 nn0z 12664 . . . . . . . . . . . . 13 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℤ)
15 nn0z 12664 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
16 zsubcl 12685 . . . . . . . . . . . . 13 (((♯‘𝑦) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1714, 15, 16syl2anr 596 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
18173adant3 1132 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1913, 18sylbi 217 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2019adantl 481 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2110, 12, 203jca 1128 . . . . . . . 8 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
229, 21sylan 579 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
23 2cshw 14861 . . . . . . 7 ((𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
2422, 23syl 17 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
25 nn0cn 12563 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
26 nn0cn 12563 . . . . . . . . . . . 12 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℂ)
2725, 26anim12i 612 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
28273adant3 1132 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
2913, 28sylbi 217 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
30 pncan3 11544 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3129, 30syl 17 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3231adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3332oveq2d 7464 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))) = (𝑦 cyclShift (♯‘𝑦)))
34 cshwn 14845 . . . . . . . 8 (𝑦 ∈ Word 𝑉 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
359, 34syl 17 . . . . . . 7 (𝜑 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3635adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3724, 33, 363eqtrrd 2785 . . . . 5 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
3837adantrr 716 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
39 oveq1 7455 . . . . . . 7 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
4039eqeq2d 2751 . . . . . 6 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4140adantl 481 . . . . 5 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4241adantl 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4338, 42mpbird 257 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
44 oveq2 7456 . . . 4 (𝑛 = ((♯‘𝑦) − 𝑚) → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
4544rspceeqv 3658 . . 3 ((((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ∧ 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
468, 43, 45syl2anc 583 . 2 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
4746ex 412 1 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187  cle 11325  cmin 11520  0cn0 12553  cz 12639  ...cfz 13567  chash 14379  Word cword 14562   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  erclwwlksym  30053  erclwwlknsym  30102
  Copyright terms: Public domain W3C validator