MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcshid Structured version   Visualization version   GIF version

Theorem cshwcshid 14236
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 27905 and erclwwlknsym 27954. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcshid.1 (𝜑𝑦 ∈ Word 𝑉)
cshwcshid.2 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
Assertion
Ref Expression
cshwcshid (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Distinct variable group:   𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem cshwcshid
StepHypRef Expression
1 fznn0sub2 13063 . . . . . . 7 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦)))
2 oveq2 7158 . . . . . . . 8 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
32eleq2d 2837 . . . . . . 7 ((♯‘𝑥) = (♯‘𝑦) → (((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ↔ ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦))))
41, 3syl5ibr 249 . . . . . 6 ((♯‘𝑥) = (♯‘𝑦) → (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
5 cshwcshid.2 . . . . . 6 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
64, 5syl11 33 . . . . 5 (𝑚 ∈ (0...(♯‘𝑦)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
76adantr 484 . . . 4 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
87impcom 411 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)))
9 cshwcshid.1 . . . . . . . 8 (𝜑𝑦 ∈ Word 𝑉)
10 simpl 486 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 ∈ Word 𝑉)
11 elfzelz 12956 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
1211adantl 485 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑚 ∈ ℤ)
13 elfz2nn0 13047 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)))
14 nn0z 12044 . . . . . . . . . . . . 13 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℤ)
15 nn0z 12044 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
16 zsubcl 12063 . . . . . . . . . . . . 13 (((♯‘𝑦) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1714, 15, 16syl2anr 599 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
18173adant3 1129 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1913, 18sylbi 220 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2019adantl 485 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2110, 12, 203jca 1125 . . . . . . . 8 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
229, 21sylan 583 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
23 2cshw 14222 . . . . . . 7 ((𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
2422, 23syl 17 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
25 nn0cn 11944 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
26 nn0cn 11944 . . . . . . . . . . . 12 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℂ)
2725, 26anim12i 615 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
28273adant3 1129 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
2913, 28sylbi 220 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
30 pncan3 10932 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3129, 30syl 17 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3231adantl 485 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3332oveq2d 7166 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))) = (𝑦 cyclShift (♯‘𝑦)))
34 cshwn 14206 . . . . . . . 8 (𝑦 ∈ Word 𝑉 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
359, 34syl 17 . . . . . . 7 (𝜑 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3635adantr 484 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3724, 33, 363eqtrrd 2798 . . . . 5 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
3837adantrr 716 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
39 oveq1 7157 . . . . . . 7 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
4039eqeq2d 2769 . . . . . 6 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4140adantl 485 . . . . 5 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4241adantl 485 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4338, 42mpbird 260 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
44 oveq2 7158 . . . 4 (𝑛 = ((♯‘𝑦) − 𝑚) → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
4544rspceeqv 3556 . . 3 ((((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ∧ 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
468, 43, 45syl2anc 587 . 2 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
4746ex 416 1 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071   class class class wbr 5032  cfv 6335  (class class class)co 7150  cc 10573  0cc0 10575   + caddc 10578  cle 10714  cmin 10908  0cn0 11934  cz 12020  ...cfz 12939  chash 13740  Word cword 13913   cyclShift ccsh 14197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-hash 13741  df-word 13914  df-concat 13970  df-substr 14050  df-pfx 14080  df-csh 14198
This theorem is referenced by:  erclwwlksym  27905  erclwwlknsym  27954
  Copyright terms: Public domain W3C validator