MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcshid Structured version   Visualization version   GIF version

Theorem cshwcshid 14793
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 29950 and erclwwlknsym 29999. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcshid.1 (𝜑𝑦 ∈ Word 𝑉)
cshwcshid.2 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
Assertion
Ref Expression
cshwcshid (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Distinct variable group:   𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem cshwcshid
StepHypRef Expression
1 fznn0sub2 13596 . . . . . . 7 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦)))
2 oveq2 7395 . . . . . . . 8 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
32eleq2d 2814 . . . . . . 7 ((♯‘𝑥) = (♯‘𝑦) → (((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ↔ ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑦))))
41, 3imbitrrid 246 . . . . . 6 ((♯‘𝑥) = (♯‘𝑦) → (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
5 cshwcshid.2 . . . . . 6 (𝜑 → (♯‘𝑥) = (♯‘𝑦))
64, 5syl11 33 . . . . 5 (𝑚 ∈ (0...(♯‘𝑦)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
76adantr 480 . . . 4 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝜑 → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥))))
87impcom 407 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)))
9 cshwcshid.1 . . . . . . . 8 (𝜑𝑦 ∈ Word 𝑉)
10 simpl 482 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 ∈ Word 𝑉)
11 elfzelz 13485 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
1211adantl 481 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → 𝑚 ∈ ℤ)
13 elfz2nn0 13579 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)))
14 nn0z 12554 . . . . . . . . . . . . 13 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℤ)
15 nn0z 12554 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
16 zsubcl 12575 . . . . . . . . . . . . 13 (((♯‘𝑦) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1714, 15, 16syl2anr 597 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
18173adant3 1132 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
1913, 18sylbi 217 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2019adantl 481 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → ((♯‘𝑦) − 𝑚) ∈ ℤ)
2110, 12, 203jca 1128 . . . . . . . 8 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
229, 21sylan 580 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ))
23 2cshw 14778 . . . . . . 7 ((𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((♯‘𝑦) − 𝑚) ∈ ℤ) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
2422, 23syl 17 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))))
25 nn0cn 12452 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
26 nn0cn 12452 . . . . . . . . . . . 12 ((♯‘𝑦) ∈ ℕ0 → (♯‘𝑦) ∈ ℂ)
2725, 26anim12i 613 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
28273adant3 1132 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑦) ∈ ℕ0𝑚 ≤ (♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
2913, 28sylbi 217 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ))
30 pncan3 11429 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ (♯‘𝑦) ∈ ℂ) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3129, 30syl 17 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3231adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑚 + ((♯‘𝑦) − 𝑚)) = (♯‘𝑦))
3332oveq2d 7403 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (𝑚 + ((♯‘𝑦) − 𝑚))) = (𝑦 cyclShift (♯‘𝑦)))
34 cshwn 14762 . . . . . . . 8 (𝑦 ∈ Word 𝑉 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
359, 34syl 17 . . . . . . 7 (𝜑 → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3635adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → (𝑦 cyclShift (♯‘𝑦)) = 𝑦)
3724, 33, 363eqtrrd 2769 . . . . 5 ((𝜑𝑚 ∈ (0...(♯‘𝑦))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
3837adantrr 717 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
39 oveq1 7394 . . . . . . 7 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚)))
4039eqeq2d 2740 . . . . . 6 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4140adantl 481 . . . . 5 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4241adantl 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → (𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((♯‘𝑦) − 𝑚))))
4338, 42mpbird 257 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
44 oveq2 7395 . . . 4 (𝑛 = ((♯‘𝑦) − 𝑚) → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift ((♯‘𝑦) − 𝑚)))
4544rspceeqv 3611 . . 3 ((((♯‘𝑦) − 𝑚) ∈ (0...(♯‘𝑥)) ∧ 𝑦 = (𝑥 cyclShift ((♯‘𝑦) − 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
468, 43, 45syl2anc 584 . 2 ((𝜑 ∧ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
4746ex 412 1 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071  cle 11209  cmin 11405  0cn0 12442  cz 12529  ...cfz 13468  chash 14295  Word cword 14478   cyclShift ccsh 14753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754
This theorem is referenced by:  erclwwlksym  29950  erclwwlknsym  29999
  Copyright terms: Public domain W3C validator