MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgfval Structured version   Visualization version   GIF version

Theorem prdsplusgfval 16843
Description: Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsplusgval.p + = (+g𝑌)
prdsplusgfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
prdsplusgfval (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))

Proof of Theorem prdsplusgfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.b . . . 4 𝐵 = (Base‘𝑌)
3 prdsbasmpt.s . . . 4 (𝜑𝑆𝑉)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
6 prdsplusgval.f . . . 4 (𝜑𝐹𝐵)
7 prdsplusgval.g . . . 4 (𝜑𝐺𝐵)
8 prdsplusgval.p . . . 4 + = (+g𝑌)
91, 2, 3, 4, 5, 6, 7, 8prdsplusgval 16842 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
109fveq1d 6670 . 2 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽))
11 prdsplusgfval.j . . 3 (𝜑𝐽𝐼)
12 2fveq3 6673 . . . . 5 (𝑥 = 𝐽 → (+g‘(𝑅𝑥)) = (+g‘(𝑅𝐽)))
13 fveq2 6668 . . . . 5 (𝑥 = 𝐽 → (𝐹𝑥) = (𝐹𝐽))
14 fveq2 6668 . . . . 5 (𝑥 = 𝐽 → (𝐺𝑥) = (𝐺𝐽))
1512, 13, 14oveq123d 7185 . . . 4 (𝑥 = 𝐽 → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
16 eqid 2738 . . . 4 (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))
17 ovex 7197 . . . 4 ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)) ∈ V
1815, 16, 17fvmpt 6769 . . 3 (𝐽𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
1911, 18syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
2010, 19eqtrd 2773 1 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  cmpt 5107   Fn wfn 6328  cfv 6333  (class class class)co 7164  Basecbs 16579  +gcplusg 16661  Xscprds 16815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-hom 16685  df-cco 16686  df-prds 16817
This theorem is referenced by:  prdsmndd  18053  prdspjmhm  18102  prdsringd  19477  prdslmodd  19853  dsmmacl  20550
  Copyright terms: Public domain W3C validator