MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgfval Structured version   Visualization version   GIF version

Theorem prdsplusgfval 17361
Description: Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsplusgval.p + = (+g𝑌)
prdsplusgfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
prdsplusgfval (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))

Proof of Theorem prdsplusgfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.b . . . 4 𝐵 = (Base‘𝑌)
3 prdsbasmpt.s . . . 4 (𝜑𝑆𝑉)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
6 prdsplusgval.f . . . 4 (𝜑𝐹𝐵)
7 prdsplusgval.g . . . 4 (𝜑𝐺𝐵)
8 prdsplusgval.p . . . 4 + = (+g𝑌)
91, 2, 3, 4, 5, 6, 7, 8prdsplusgval 17360 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
109fveq1d 6845 . 2 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽))
11 prdsplusgfval.j . . 3 (𝜑𝐽𝐼)
12 2fveq3 6848 . . . . 5 (𝑥 = 𝐽 → (+g‘(𝑅𝑥)) = (+g‘(𝑅𝐽)))
13 fveq2 6843 . . . . 5 (𝑥 = 𝐽 → (𝐹𝑥) = (𝐹𝐽))
14 fveq2 6843 . . . . 5 (𝑥 = 𝐽 → (𝐺𝑥) = (𝐺𝐽))
1512, 13, 14oveq123d 7379 . . . 4 (𝑥 = 𝐽 → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
16 eqid 2733 . . . 4 (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))
17 ovex 7391 . . . 4 ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)) ∈ V
1815, 16, 17fvmpt 6949 . . 3 (𝐽𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
1911, 18syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
2010, 19eqtrd 2773 1 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cmpt 5189   Fn wfn 6492  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  Xscprds 17332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-prds 17334
This theorem is referenced by:  prdsmndd  18594  prdspjmhm  18644  prdsringd  20041  prdslmodd  20445  dsmmacl  21163
  Copyright terms: Public domain W3C validator