| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbasfsupp | Structured version Visualization version GIF version | ||
| Description: Rewrite a finite support for nonnegative integers : For functions mapping a set 𝐼 to the nonnegative integers, having finite support can also be written as having a finite preimage of the positive integers. The latter expression is used for example in psrbas 21865, but with the former expression, theorems about finite support can be used more directly. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| psrbasfsupp.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} |
| Ref | Expression |
|---|---|
| psrbasfsupp | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbasfsupp.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} | |
| 2 | 0nn0 12391 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | isfsupp 9244 | . . . . 5 ⊢ ((𝑓 ∈ (ℕ0 ↑m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) |
| 5 | elmapfun 8785 | . . . . 5 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → Fun 𝑓) | |
| 6 | 5 | biantrurd 532 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) |
| 7 | dfn2 12389 | . . . . . . . . . 10 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 8 | 7 | ineq2i 4162 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ ℕ) = (ran 𝑓 ∩ (ℕ0 ∖ {0})) |
| 9 | incom 4154 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ ℕ) = (ℕ ∩ ran 𝑓) | |
| 10 | indif2 4226 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ (ℕ0 ∖ {0})) = ((ran 𝑓 ∩ ℕ0) ∖ {0}) | |
| 11 | 8, 9, 10 | 3eqtr3i 2762 | . . . . . . . 8 ⊢ (ℕ ∩ ran 𝑓) = ((ran 𝑓 ∩ ℕ0) ∖ {0}) |
| 12 | elmapi 8768 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 𝑓:𝐼⟶ℕ0) | |
| 13 | 12 | frnd 6654 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ran 𝑓 ⊆ ℕ0) |
| 14 | dfss2 3915 | . . . . . . . . . 10 ⊢ (ran 𝑓 ⊆ ℕ0 ↔ (ran 𝑓 ∩ ℕ0) = ran 𝑓) | |
| 15 | 13, 14 | sylib 218 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (ran 𝑓 ∩ ℕ0) = ran 𝑓) |
| 16 | 15 | difeq1d 4070 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((ran 𝑓 ∩ ℕ0) ∖ {0}) = (ran 𝑓 ∖ {0})) |
| 17 | 11, 16 | eqtrid 2778 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (ℕ ∩ ran 𝑓) = (ran 𝑓 ∖ {0})) |
| 18 | 17 | imaeq2d 6004 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (◡𝑓 “ (ℕ ∩ ran 𝑓)) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) |
| 19 | fimacnvinrn 6999 | . . . . . . 7 ⊢ (Fun 𝑓 → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ ran 𝑓))) | |
| 20 | 5, 19 | syl 17 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ ran 𝑓))) |
| 21 | id 22 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 𝑓 ∈ (ℕ0 ↑m 𝐼)) | |
| 22 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 0 ∈ ℕ0) |
| 23 | supppreima 32664 | . . . . . . 7 ⊢ ((Fun 𝑓 ∧ 𝑓 ∈ (ℕ0 ↑m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 supp 0) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) | |
| 24 | 5, 21, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 supp 0) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) |
| 25 | 18, 20, 24 | 3eqtr4rd 2777 | . . . . 5 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
| 26 | 25 | eleq1d 2816 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈ Fin)) |
| 27 | 4, 6, 26 | 3bitr2d 307 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 finSupp 0 ↔ (◡𝑓 “ ℕ) ∈ Fin)) |
| 28 | 27 | rabbiia 3399 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| 29 | 1, 28 | eqtri 2754 | 1 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 {csn 4571 class class class wbr 5086 ◡ccnv 5610 ran crn 5612 “ cima 5614 Fun wfun 6470 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fsupp 9241 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-nn 12121 df-n0 12377 |
| This theorem is referenced by: mplvrpmfgalem 33566 mplvrpmga 33567 mplvrpmmhm 33568 mplvrpmrhm 33569 issply 33576 esplympl 33580 esplymhp 33581 |
| Copyright terms: Public domain | W3C validator |