Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psrbasfsupp Structured version   Visualization version   GIF version

Theorem psrbasfsupp 33564
Description: Rewrite a finite support for nonnegative integers : For functions mapping a set 𝐼 to the nonnegative integers, having finite support can also be written as having a finite preimage of the positive integers. The latter expression is used for example in psrbas 21865, but with the former expression, theorems about finite support can be used more directly. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypothesis
Ref Expression
psrbasfsupp.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ 𝑓 finSupp 0}
Assertion
Ref Expression
psrbasfsupp 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}

Proof of Theorem psrbasfsupp
StepHypRef Expression
1 psrbasfsupp.d . 2 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ 𝑓 finSupp 0}
2 0nn0 12391 . . . . 5 0 ∈ ℕ0
3 isfsupp 9244 . . . . 5 ((𝑓 ∈ (ℕ0m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin)))
42, 3mpan2 691 . . . 4 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin)))
5 elmapfun 8785 . . . . 5 (𝑓 ∈ (ℕ0m 𝐼) → Fun 𝑓)
65biantrurd 532 . . . 4 (𝑓 ∈ (ℕ0m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin)))
7 dfn2 12389 . . . . . . . . . 10 ℕ = (ℕ0 ∖ {0})
87ineq2i 4162 . . . . . . . . 9 (ran 𝑓 ∩ ℕ) = (ran 𝑓 ∩ (ℕ0 ∖ {0}))
9 incom 4154 . . . . . . . . 9 (ran 𝑓 ∩ ℕ) = (ℕ ∩ ran 𝑓)
10 indif2 4226 . . . . . . . . 9 (ran 𝑓 ∩ (ℕ0 ∖ {0})) = ((ran 𝑓 ∩ ℕ0) ∖ {0})
118, 9, 103eqtr3i 2762 . . . . . . . 8 (ℕ ∩ ran 𝑓) = ((ran 𝑓 ∩ ℕ0) ∖ {0})
12 elmapi 8768 . . . . . . . . . . 11 (𝑓 ∈ (ℕ0m 𝐼) → 𝑓:𝐼⟶ℕ0)
1312frnd 6654 . . . . . . . . . 10 (𝑓 ∈ (ℕ0m 𝐼) → ran 𝑓 ⊆ ℕ0)
14 dfss2 3915 . . . . . . . . . 10 (ran 𝑓 ⊆ ℕ0 ↔ (ran 𝑓 ∩ ℕ0) = ran 𝑓)
1513, 14sylib 218 . . . . . . . . 9 (𝑓 ∈ (ℕ0m 𝐼) → (ran 𝑓 ∩ ℕ0) = ran 𝑓)
1615difeq1d 4070 . . . . . . . 8 (𝑓 ∈ (ℕ0m 𝐼) → ((ran 𝑓 ∩ ℕ0) ∖ {0}) = (ran 𝑓 ∖ {0}))
1711, 16eqtrid 2778 . . . . . . 7 (𝑓 ∈ (ℕ0m 𝐼) → (ℕ ∩ ran 𝑓) = (ran 𝑓 ∖ {0}))
1817imaeq2d 6004 . . . . . 6 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 “ (ℕ ∩ ran 𝑓)) = (𝑓 “ (ran 𝑓 ∖ {0})))
19 fimacnvinrn 6999 . . . . . . 7 (Fun 𝑓 → (𝑓 “ ℕ) = (𝑓 “ (ℕ ∩ ran 𝑓)))
205, 19syl 17 . . . . . 6 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 “ ℕ) = (𝑓 “ (ℕ ∩ ran 𝑓)))
21 id 22 . . . . . . 7 (𝑓 ∈ (ℕ0m 𝐼) → 𝑓 ∈ (ℕ0m 𝐼))
222a1i 11 . . . . . . 7 (𝑓 ∈ (ℕ0m 𝐼) → 0 ∈ ℕ0)
23 supppreima 32664 . . . . . . 7 ((Fun 𝑓𝑓 ∈ (ℕ0m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 supp 0) = (𝑓 “ (ran 𝑓 ∖ {0})))
245, 21, 22, 23syl3anc 1373 . . . . . 6 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 supp 0) = (𝑓 “ (ran 𝑓 ∖ {0})))
2518, 20, 243eqtr4rd 2777 . . . . 5 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 supp 0) = (𝑓 “ ℕ))
2625eleq1d 2816 . . . 4 (𝑓 ∈ (ℕ0m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
274, 6, 263bitr2d 307 . . 3 (𝑓 ∈ (ℕ0m 𝐼) → (𝑓 finSupp 0 ↔ (𝑓 “ ℕ) ∈ Fin))
2827rabbiia 3399 . 2 {𝑓 ∈ (ℕ0m 𝐼) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
291, 28eqtri 2754 1 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  cin 3896  wss 3897  {csn 4571   class class class wbr 5086  ccnv 5610  ran crn 5612  cima 5614  Fun wfun 6470  (class class class)co 7341   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  0cc0 11001  cn 12120  0cn0 12376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fsupp 9241  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-nn 12121  df-n0 12377
This theorem is referenced by:  mplvrpmfgalem  33566  mplvrpmga  33567  mplvrpmmhm  33568  mplvrpmrhm  33569  issply  33576  esplympl  33580  esplymhp  33581
  Copyright terms: Public domain W3C validator