| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbasfsupp | Structured version Visualization version GIF version | ||
| Description: Rewrite a finite support for nonnegative integers : For functions mapping a set 𝐼 to the nonnegative integers, having finite support can also be written as having a finite preimage of the positive integers. The latter expression is used for example in psrbas 21880, but with the former expression, theorems about finite support can be used more directly. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| psrbasfsupp.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} |
| Ref | Expression |
|---|---|
| psrbasfsupp | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbasfsupp.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} | |
| 2 | 0nn0 12407 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | isfsupp 9260 | . . . . 5 ⊢ ((𝑓 ∈ (ℕ0 ↑m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 finSupp 0 ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) |
| 5 | elmapfun 8799 | . . . . 5 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → Fun 𝑓) | |
| 6 | 5 | biantrurd 532 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (Fun 𝑓 ∧ (𝑓 supp 0) ∈ Fin))) |
| 7 | dfn2 12405 | . . . . . . . . . 10 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 8 | 7 | ineq2i 4166 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ ℕ) = (ran 𝑓 ∩ (ℕ0 ∖ {0})) |
| 9 | incom 4158 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ ℕ) = (ℕ ∩ ran 𝑓) | |
| 10 | indif2 4230 | . . . . . . . . 9 ⊢ (ran 𝑓 ∩ (ℕ0 ∖ {0})) = ((ran 𝑓 ∩ ℕ0) ∖ {0}) | |
| 11 | 8, 9, 10 | 3eqtr3i 2764 | . . . . . . . 8 ⊢ (ℕ ∩ ran 𝑓) = ((ran 𝑓 ∩ ℕ0) ∖ {0}) |
| 12 | elmapi 8782 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 𝑓:𝐼⟶ℕ0) | |
| 13 | 12 | frnd 6667 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ran 𝑓 ⊆ ℕ0) |
| 14 | dfss2 3916 | . . . . . . . . . 10 ⊢ (ran 𝑓 ⊆ ℕ0 ↔ (ran 𝑓 ∩ ℕ0) = ran 𝑓) | |
| 15 | 13, 14 | sylib 218 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (ran 𝑓 ∩ ℕ0) = ran 𝑓) |
| 16 | 15 | difeq1d 4074 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((ran 𝑓 ∩ ℕ0) ∖ {0}) = (ran 𝑓 ∖ {0})) |
| 17 | 11, 16 | eqtrid 2780 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (ℕ ∩ ran 𝑓) = (ran 𝑓 ∖ {0})) |
| 18 | 17 | imaeq2d 6016 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (◡𝑓 “ (ℕ ∩ ran 𝑓)) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) |
| 19 | fimacnvinrn 7013 | . . . . . . 7 ⊢ (Fun 𝑓 → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ ran 𝑓))) | |
| 20 | 5, 19 | syl 17 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ ran 𝑓))) |
| 21 | id 22 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 𝑓 ∈ (ℕ0 ↑m 𝐼)) | |
| 22 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → 0 ∈ ℕ0) |
| 23 | supppreima 32696 | . . . . . . 7 ⊢ ((Fun 𝑓 ∧ 𝑓 ∈ (ℕ0 ↑m 𝐼) ∧ 0 ∈ ℕ0) → (𝑓 supp 0) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) | |
| 24 | 5, 21, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 supp 0) = (◡𝑓 “ (ran 𝑓 ∖ {0}))) |
| 25 | 18, 20, 24 | 3eqtr4rd 2779 | . . . . 5 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
| 26 | 25 | eleq1d 2818 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → ((𝑓 supp 0) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈ Fin)) |
| 27 | 4, 6, 26 | 3bitr2d 307 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑m 𝐼) → (𝑓 finSupp 0 ↔ (◡𝑓 “ ℕ) ∈ Fin)) |
| 28 | 27 | rabbiia 3400 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| 29 | 1, 28 | eqtri 2756 | 1 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 {csn 4577 class class class wbr 5095 ◡ccnv 5620 ran crn 5622 “ cima 5624 Fun wfun 6483 (class class class)co 7355 supp csupp 8099 ↑m cmap 8759 Fincfn 8879 finSupp cfsupp 9256 0cc0 11017 ℕcn 12136 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fsupp 9257 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-nn 12137 df-n0 12393 |
| This theorem is referenced by: extvfvvcl 33628 extvfvcl 33629 mplmulmvr 33632 evlextv 33635 mplvrpmfgalem 33637 mplvrpmga 33638 mplvrpmmhm 33639 mplvrpmrhm 33640 issply 33647 esplyfval0 33650 esplyfval2 33651 esplympl 33653 esplymhp 33654 esplyfval3 33658 esplyind 33659 vieta 33664 |
| Copyright terms: Public domain | W3C validator |