Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qdensere2 | Structured version Visualization version GIF version |
Description: ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
tgioo.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
qdensere2 | ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | tgioo.2 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
3 | 1, 2 | tgioo 23903 | . . . 4 ⊢ (topGen‘ran (,)) = 𝐽 |
4 | 3 | fveq2i 6764 | . . 3 ⊢ (cls‘(topGen‘ran (,))) = (cls‘𝐽) |
5 | 4 | fveq1i 6762 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ((cls‘𝐽)‘ℚ) |
6 | qdensere 23877 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
7 | 5, 6 | eqtr3i 2767 | 1 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5583 ran crn 5586 ↾ cres 5587 ∘ ccom 5589 ‘cfv 6423 ℝcr 10817 − cmin 11151 ℚcq 12633 (,)cioo 13024 abscabs 14889 topGenctg 17092 MetOpencmopn 20531 clsccl 22113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-pre-sup 10896 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-er 8461 df-map 8580 df-en 8697 df-dom 8698 df-sdom 8699 df-sup 9147 df-inf 9148 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-div 11579 df-nn 11920 df-2 11982 df-3 11983 df-n0 12180 df-z 12266 df-uz 12528 df-q 12634 df-rp 12676 df-xneg 12793 df-xadd 12794 df-xmul 12795 df-ioo 13028 df-seq 13666 df-exp 13727 df-cj 14754 df-re 14755 df-im 14756 df-sqrt 14890 df-abs 14891 df-topgen 17098 df-psmet 20533 df-xmet 20534 df-met 20535 df-bl 20536 df-mopn 20537 df-top 21987 df-bases 22040 df-cld 22114 df-ntr 22115 df-cls 22116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |