| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmzrhval | Structured version Visualization version GIF version | ||
| Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| Ref | Expression |
|---|---|
| rhmzrhval.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| rhmzrhval.2 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
| rhmzrhval.3 | ⊢ 𝑀 = (ℤRHom‘𝑅) |
| rhmzrhval.4 | ⊢ 𝑁 = (ℤRHom‘𝑆) |
| Ref | Expression |
|---|---|
| rhmzrhval | ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmzrhval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | rhmrcl1 20385 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | rhmzrhval.3 | . . . . . . 7 ⊢ 𝑀 = (ℤRHom‘𝑅) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 4, 5, 6 | zrhval2 21418 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 9 | 8 | fveq1d 6860 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) |
| 10 | 9 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋))) |
| 11 | eqidd 2730 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) | |
| 12 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 14 | rhmzrhval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
| 15 | ovexd 7422 | . . . . . . 7 ⊢ (𝜑 → (𝑋(.g‘𝑅)(1r‘𝑅)) ∈ V) | |
| 16 | 11, 13, 14, 15 | fvmptd 6975 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅)))) |
| 18 | rhmghm 20393 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 21 | 20, 6 | ringidcl 20174 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 23 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘𝑆) = (.g‘𝑆) | |
| 24 | 20, 5, 23 | ghmmulg 19160 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑋 ∈ ℤ ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 25 | 19, 14, 22, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 6, 26 | rhm1 20398 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 29 | 28 | oveq2d 7403 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 30 | 25, 29 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 31 | 17, 30 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 32 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) | |
| 33 | oveq1 7394 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) | |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 35 | ovexd 7422 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) ∈ V) | |
| 36 | 32, 34, 14, 35 | fvmptd 6975 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 37 | 36 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 38 | 31, 37 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 39 | 10, 38 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 40 | rhmrcl2 20386 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 41 | 1, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 42 | rhmzrhval.4 | . . . . . 6 ⊢ 𝑁 = (ℤRHom‘𝑆) | |
| 43 | 42, 23, 26 | zrhval2 21418 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝑁 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) |
| 44 | 43 | fveq1d 6860 | . . . 4 ⊢ (𝑆 ∈ Ring → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 45 | 41, 44 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 46 | 45 | eqcomd 2735 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑁‘𝑋)) |
| 47 | 39, 46 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℤcz 12529 Basecbs 17179 .gcmg 18999 GrpHom cghm 19144 1rcur 20090 Ringcrg 20142 RingHom crh 20378 ℤRHomczrh 21409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-cnfld 21265 df-zring 21357 df-zrh 21413 |
| This theorem is referenced by: ply1asclzrhval 42176 aks5lem3a 42177 |
| Copyright terms: Public domain | W3C validator |