![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmzrhval | Structured version Visualization version GIF version |
Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
Ref | Expression |
---|---|
rhmzrhval.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
rhmzrhval.2 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
rhmzrhval.3 | ⊢ 𝑀 = (ℤRHom‘𝑅) |
rhmzrhval.4 | ⊢ 𝑁 = (ℤRHom‘𝑆) |
Ref | Expression |
---|---|
rhmzrhval | ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmzrhval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
2 | rhmrcl1 20427 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | rhmzrhval.3 | . . . . . . 7 ⊢ 𝑀 = (ℤRHom‘𝑅) | |
5 | eqid 2725 | . . . . . . 7 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
6 | eqid 2725 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 4, 5, 6 | zrhval2 21451 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
8 | 3, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
9 | 8 | fveq1d 6898 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) |
10 | 9 | fveq2d 6900 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋))) |
11 | eqidd 2726 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) | |
12 | oveq1 7426 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) | |
13 | 12 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
14 | rhmzrhval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
15 | ovexd 7454 | . . . . . . 7 ⊢ (𝜑 → (𝑋(.g‘𝑅)(1r‘𝑅)) ∈ V) | |
16 | 11, 13, 14, 15 | fvmptd 7011 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
17 | 16 | fveq2d 6900 | . . . . 5 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅)))) |
18 | rhmghm 20435 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
20 | eqid 2725 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
21 | 20, 6 | ringidcl 20214 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
23 | eqid 2725 | . . . . . . . 8 ⊢ (.g‘𝑆) = (.g‘𝑆) | |
24 | 20, 5, 23 | ghmmulg 19191 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑋 ∈ ℤ ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
25 | 19, 14, 22, 24 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
26 | eqid 2725 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
27 | 6, 26 | rhm1 20440 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
29 | 28 | oveq2d 7435 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
30 | 25, 29 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
31 | 17, 30 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
32 | eqidd 2726 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) | |
33 | oveq1 7426 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) | |
34 | 33 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
35 | ovexd 7454 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) ∈ V) | |
36 | 32, 34, 14, 35 | fvmptd 7011 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
37 | 36 | eqcomd 2731 | . . . 4 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
38 | 31, 37 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
39 | 10, 38 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
40 | rhmrcl2 20428 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
41 | 1, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
42 | rhmzrhval.4 | . . . . . 6 ⊢ 𝑁 = (ℤRHom‘𝑆) | |
43 | 42, 23, 26 | zrhval2 21451 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝑁 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) |
44 | 43 | fveq1d 6898 | . . . 4 ⊢ (𝑆 ∈ Ring → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
45 | 41, 44 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
46 | 45 | eqcomd 2731 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑁‘𝑋)) |
47 | 39, 46 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℤcz 12591 Basecbs 17183 .gcmg 19031 GrpHom cghm 19175 1rcur 20133 Ringcrg 20185 RingHom crh 20420 ℤRHomczrh 21442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-seq 14003 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-grp 18901 df-minusg 18902 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-cnfld 21297 df-zring 21390 df-zrh 21446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |