| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmzrhval | Structured version Visualization version GIF version | ||
| Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| Ref | Expression |
|---|---|
| rhmzrhval.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| rhmzrhval.2 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
| rhmzrhval.3 | ⊢ 𝑀 = (ℤRHom‘𝑅) |
| rhmzrhval.4 | ⊢ 𝑁 = (ℤRHom‘𝑆) |
| Ref | Expression |
|---|---|
| rhmzrhval | ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmzrhval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | rhmrcl1 20444 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | rhmzrhval.3 | . . . . . . 7 ⊢ 𝑀 = (ℤRHom‘𝑅) | |
| 5 | eqid 2734 | . . . . . . 7 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 6 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 4, 5, 6 | zrhval2 21481 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 9 | 8 | fveq1d 6888 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) |
| 10 | 9 | fveq2d 6890 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋))) |
| 11 | eqidd 2735 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) | |
| 12 | oveq1 7420 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 14 | rhmzrhval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
| 15 | ovexd 7448 | . . . . . . 7 ⊢ (𝜑 → (𝑋(.g‘𝑅)(1r‘𝑅)) ∈ V) | |
| 16 | 11, 13, 14, 15 | fvmptd 7003 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 17 | 16 | fveq2d 6890 | . . . . 5 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅)))) |
| 18 | rhmghm 20452 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 21 | 20, 6 | ringidcl 20230 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 23 | eqid 2734 | . . . . . . . 8 ⊢ (.g‘𝑆) = (.g‘𝑆) | |
| 24 | 20, 5, 23 | ghmmulg 19215 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑋 ∈ ℤ ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 25 | 19, 14, 22, 24 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 26 | eqid 2734 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 6, 26 | rhm1 20457 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 29 | 28 | oveq2d 7429 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 30 | 25, 29 | eqtrd 2769 | . . . . 5 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 31 | 17, 30 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 32 | eqidd 2735 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) | |
| 33 | oveq1 7420 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) | |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 35 | ovexd 7448 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) ∈ V) | |
| 36 | 32, 34, 14, 35 | fvmptd 7003 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 37 | 36 | eqcomd 2740 | . . . 4 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 38 | 31, 37 | eqtrd 2769 | . . 3 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 39 | 10, 38 | eqtrd 2769 | . 2 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 40 | rhmrcl2 20445 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 41 | 1, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 42 | rhmzrhval.4 | . . . . . 6 ⊢ 𝑁 = (ℤRHom‘𝑆) | |
| 43 | 42, 23, 26 | zrhval2 21481 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝑁 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) |
| 44 | 43 | fveq1d 6888 | . . . 4 ⊢ (𝑆 ∈ Ring → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 45 | 41, 44 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 46 | 45 | eqcomd 2740 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑁‘𝑋)) |
| 47 | 39, 46 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℤcz 12596 Basecbs 17229 .gcmg 19054 GrpHom cghm 19199 1rcur 20146 Ringcrg 20198 RingHom crh 20437 ℤRHomczrh 21472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-seq 14025 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-cnfld 21327 df-zring 21420 df-zrh 21476 |
| This theorem is referenced by: ply1asclzrhval 42148 aks5lem3a 42149 |
| Copyright terms: Public domain | W3C validator |