| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmzrhval | Structured version Visualization version GIF version | ||
| Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| Ref | Expression |
|---|---|
| rhmzrhval.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| rhmzrhval.2 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
| rhmzrhval.3 | ⊢ 𝑀 = (ℤRHom‘𝑅) |
| rhmzrhval.4 | ⊢ 𝑁 = (ℤRHom‘𝑆) |
| Ref | Expression |
|---|---|
| rhmzrhval | ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmzrhval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | rhmrcl1 20391 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | rhmzrhval.3 | . . . . . . 7 ⊢ 𝑀 = (ℤRHom‘𝑅) | |
| 5 | eqid 2730 | . . . . . . 7 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 4, 5, 6 | zrhval2 21424 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 9 | 8 | fveq1d 6867 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) |
| 10 | 9 | fveq2d 6869 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋))) |
| 11 | eqidd 2731 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) | |
| 12 | oveq1 7401 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 14 | rhmzrhval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
| 15 | ovexd 7429 | . . . . . . 7 ⊢ (𝜑 → (𝑋(.g‘𝑅)(1r‘𝑅)) ∈ V) | |
| 16 | 11, 13, 14, 15 | fvmptd 6982 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 17 | 16 | fveq2d 6869 | . . . . 5 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅)))) |
| 18 | rhmghm 20399 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 21 | 20, 6 | ringidcl 20180 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 23 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘𝑆) = (.g‘𝑆) | |
| 24 | 20, 5, 23 | ghmmulg 19166 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑋 ∈ ℤ ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 25 | 19, 14, 22, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 26 | eqid 2730 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 6, 26 | rhm1 20404 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 29 | 28 | oveq2d 7410 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 30 | 25, 29 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 31 | 17, 30 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 32 | eqidd 2731 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) | |
| 33 | oveq1 7401 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) | |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 35 | ovexd 7429 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) ∈ V) | |
| 36 | 32, 34, 14, 35 | fvmptd 6982 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 37 | 36 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 38 | 31, 37 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 39 | 10, 38 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 40 | rhmrcl2 20392 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 41 | 1, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 42 | rhmzrhval.4 | . . . . . 6 ⊢ 𝑁 = (ℤRHom‘𝑆) | |
| 43 | 42, 23, 26 | zrhval2 21424 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝑁 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) |
| 44 | 43 | fveq1d 6867 | . . . 4 ⊢ (𝑆 ∈ Ring → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 45 | 41, 44 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 46 | 45 | eqcomd 2736 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑁‘𝑋)) |
| 47 | 39, 46 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 ‘cfv 6519 (class class class)co 7394 ℤcz 12545 Basecbs 17185 .gcmg 19005 GrpHom cghm 19150 1rcur 20096 Ringcrg 20148 RingHom crh 20384 ℤRHomczrh 21415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-addf 11165 ax-mulf 11166 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-seq 13977 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-cnfld 21271 df-zring 21363 df-zrh 21419 |
| This theorem is referenced by: ply1asclzrhval 42168 aks5lem3a 42169 |
| Copyright terms: Public domain | W3C validator |