| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmzrhval | Structured version Visualization version GIF version | ||
| Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| Ref | Expression |
|---|---|
| rhmzrhval.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| rhmzrhval.2 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
| rhmzrhval.3 | ⊢ 𝑀 = (ℤRHom‘𝑅) |
| rhmzrhval.4 | ⊢ 𝑁 = (ℤRHom‘𝑆) |
| Ref | Expression |
|---|---|
| rhmzrhval | ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmzrhval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | rhmrcl1 20394 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | rhmzrhval.3 | . . . . . . 7 ⊢ 𝑀 = (ℤRHom‘𝑅) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 6 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 4, 5, 6 | zrhval2 21445 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
| 9 | 8 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) |
| 10 | 9 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋))) |
| 11 | eqidd 2732 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) | |
| 12 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑅)(1r‘𝑅)) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 14 | rhmzrhval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
| 15 | ovexd 7381 | . . . . . . 7 ⊢ (𝜑 → (𝑋(.g‘𝑅)(1r‘𝑅)) ∈ V) | |
| 16 | 11, 13, 14, 15 | fvmptd 6936 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋) = (𝑋(.g‘𝑅)(1r‘𝑅))) |
| 17 | 16 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅)))) |
| 18 | rhmghm 20401 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 21 | 20, 6 | ringidcl 20183 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 23 | eqid 2731 | . . . . . . . 8 ⊢ (.g‘𝑆) = (.g‘𝑆) | |
| 24 | 20, 5, 23 | ghmmulg 19140 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑋 ∈ ℤ ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 25 | 19, 14, 22, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅)))) |
| 26 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 6, 26 | rhm1 20406 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 29 | 28 | oveq2d 7362 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 30 | 25, 29 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (𝐹‘(𝑋(.g‘𝑅)(1r‘𝑅))) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 31 | 17, 30 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 32 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) | |
| 33 | oveq1 7353 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) | |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(.g‘𝑆)(1r‘𝑆)) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 35 | ovexd 7381 | . . . . . 6 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) ∈ V) | |
| 36 | 32, 34, 14, 35 | fvmptd 6936 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑋(.g‘𝑆)(1r‘𝑆))) |
| 37 | 36 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → (𝑋(.g‘𝑆)(1r‘𝑆)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 38 | 31, 37 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐹‘((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 39 | 10, 38 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 40 | rhmrcl2 20395 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 41 | 1, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 42 | rhmzrhval.4 | . . . . . 6 ⊢ 𝑁 = (ℤRHom‘𝑆) | |
| 43 | 42, 23, 26 | zrhval2 21445 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝑁 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))) |
| 44 | 43 | fveq1d 6824 | . . . 4 ⊢ (𝑆 ∈ Ring → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 45 | 41, 44 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋)) |
| 46 | 45 | eqcomd 2737 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑆)(1r‘𝑆)))‘𝑋) = (𝑁‘𝑋)) |
| 47 | 39, 46 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℤcz 12468 Basecbs 17120 .gcmg 18980 GrpHom cghm 19124 1rcur 20099 Ringcrg 20151 RingHom crh 20387 ℤRHomczrh 21436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-cnfld 21292 df-zring 21384 df-zrh 21440 |
| This theorem is referenced by: ply1asclzrhval 42229 aks5lem3a 42230 |
| Copyright terms: Public domain | W3C validator |