Step | Hyp | Ref
| Expression |
1 | | rhmply1vr1.f |
. . 3
⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
2 | | coeq2 5861 |
. . 3
⊢ (𝑝 = 𝑋 → (𝐻 ∘ 𝑝) = (𝐻 ∘ 𝑋)) |
3 | | rhmply1vr1.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
4 | | rhmrcl1 20427 |
. . . . 5
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
6 | | rhmply1vr1.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
7 | | rhmply1vr1.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
8 | | rhmply1vr1.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
9 | 6, 7, 8 | vr1cl 22160 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
10 | 5, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 6 | fvexi 6910 |
. . . . 5
⊢ 𝑋 ∈ V |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ V) |
13 | 3, 12 | coexd 7939 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝑋) ∈ V) |
14 | 1, 2, 10, 13 | fvmptd3 7027 |
. 2
⊢ (𝜑 → (𝐹‘𝑋) = (𝐻 ∘ 𝑋)) |
15 | | eqid 2725 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
16 | | eqid 2725 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘𝑆) |
17 | 15, 16 | rhmf 20436 |
. . . . . . 7
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
18 | 3, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
19 | | eqid 2725 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
20 | 15, 19 | ringidcl 20214 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
21 | 5, 20 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
22 | | eqid 2725 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
23 | 15, 22 | ring0cl 20215 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
24 | 5, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
25 | 21, 24 | ifcld 4576 |
. . . . . . 7
⊢ (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))
∈ (Base‘𝑅)) |
26 | 25 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))
∈ (Base‘𝑅)) |
27 | 18, 26 | cofmpt 7141 |
. . . . 5
⊢ (𝜑 → (𝐻 ∘ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))))
= (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))))) |
28 | | fvif 6912 |
. . . . . . 7
⊢ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))) =
if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) |
29 | | eqid 2725 |
. . . . . . . . . 10
⊢
(1r‘𝑆) = (1r‘𝑆) |
30 | 19, 29 | rhm1 20440 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
31 | 3, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
32 | | rhmghm 20435 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆)) |
33 | | eqid 2725 |
. . . . . . . . . 10
⊢
(0g‘𝑆) = (0g‘𝑆) |
34 | 22, 33 | ghmid 19185 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
35 | 3, 32, 34 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
36 | 31, 35 | ifeq12d 4551 |
. . . . . . 7
⊢ (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑆),
(0g‘𝑆))) |
37 | 28, 36 | eqtrid 2777 |
. . . . . 6
⊢ (𝜑 → (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))) =
if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑆),
(0g‘𝑆))) |
38 | 37 | mpteq2dv 5251 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))))
= (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑆),
(0g‘𝑆)))) |
39 | 27, 38 | eqtrd 2765 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))))
= (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑆),
(0g‘𝑆)))) |
40 | | eqid 2725 |
. . . . . 6
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
41 | | eqid 2725 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} |
42 | | 1oex 8497 |
. . . . . . 7
⊢
1o ∈ V |
43 | 42 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1o ∈
V) |
44 | | 0lt1o 8525 |
. . . . . . 7
⊢ ∅
∈ 1o |
45 | 44 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∅ ∈
1o) |
46 | 40, 41, 22, 19, 43, 5, 45 | mvrval 21944 |
. . . . 5
⊢ (𝜑 → ((1o mVar 𝑅)‘∅) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅)))) |
47 | 46 | coeq2d 5865 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = (𝐻 ∘ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑅),
(0g‘𝑅))))) |
48 | | eqid 2725 |
. . . . 5
⊢
(1o mVar 𝑆) = (1o mVar 𝑆) |
49 | | rhmrcl2 20428 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
50 | 3, 49 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Ring) |
51 | 48, 41, 33, 29, 43, 50, 45 | mvrval 21944 |
. . . 4
⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 1o) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)),
(1r‘𝑆),
(0g‘𝑆)))) |
52 | 39, 47, 51 | 3eqtr4d 2775 |
. . 3
⊢ (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) =
((1o mVar 𝑆)‘∅)) |
53 | 6 | vr1val 22134 |
. . . 4
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
54 | 53 | coeq2i 5863 |
. . 3
⊢ (𝐻 ∘ 𝑋) = (𝐻 ∘ ((1o mVar 𝑅)‘∅)) |
55 | | rhmply1vr1.y |
. . . 4
⊢ 𝑌 = (var1‘𝑆) |
56 | 55 | vr1val 22134 |
. . 3
⊢ 𝑌 = ((1o mVar 𝑆)‘∅) |
57 | 52, 54, 56 | 3eqtr4g 2790 |
. 2
⊢ (𝜑 → (𝐻 ∘ 𝑋) = 𝑌) |
58 | 14, 57 | eqtrd 2765 |
1
⊢ (𝜑 → (𝐹‘𝑋) = 𝑌) |