MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vr1 Structured version   Visualization version   GIF version

Theorem rhmply1vr1 22407
Description: A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vr1.p 𝑃 = (Poly1𝑅)
rhmply1vr1.q 𝑄 = (Poly1𝑆)
rhmply1vr1.b 𝐵 = (Base‘𝑃)
rhmply1vr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vr1.x 𝑋 = (var1𝑅)
rhmply1vr1.y 𝑌 = (var1𝑆)
rhmply1vr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmply1vr1 (𝜑 → (𝐹𝑋) = 𝑌)
Distinct variable groups:   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝑌(𝑝)

Proof of Theorem rhmply1vr1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
2 coeq2 5872 . . 3 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
3 rhmply1vr1.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
4 rhmrcl1 20493 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
6 rhmply1vr1.x . . . . 5 𝑋 = (var1𝑅)
7 rhmply1vr1.p . . . . 5 𝑃 = (Poly1𝑅)
8 rhmply1vr1.b . . . . 5 𝐵 = (Base‘𝑃)
96, 7, 8vr1cl 22235 . . . 4 (𝑅 ∈ Ring → 𝑋𝐵)
105, 9syl 17 . . 3 (𝜑𝑋𝐵)
116fvexi 6921 . . . . 5 𝑋 ∈ V
1211a1i 11 . . . 4 (𝜑𝑋 ∈ V)
133, 12coexd 7954 . . 3 (𝜑 → (𝐻𝑋) ∈ V)
141, 2, 10, 13fvmptd3 7039 . 2 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
15 eqid 2735 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2735 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1715, 16rhmf 20502 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
183, 17syl 17 . . . . . 6 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
19 eqid 2735 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2015, 19ringidcl 20280 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
215, 20syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
22 eqid 2735 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2315, 22ring0cl 20281 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
245, 23syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2521, 24ifcld 4577 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2625adantr 480 . . . . . 6 ((𝜑𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2718, 26cofmpt 7152 . . . . 5 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
28 fvif 6923 . . . . . . 7 (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
29 eqid 2735 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
3019, 29rhm1 20506 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
32 rhmghm 20501 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
33 eqid 2735 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
3422, 33ghmid 19253 . . . . . . . . 9 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
353, 32, 343syl 18 . . . . . . . 8 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
3631, 35ifeq12d 4552 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3728, 36eqtrid 2787 . . . . . 6 (𝜑 → (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3837mpteq2dv 5250 . . . . 5 (𝜑 → (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
3927, 38eqtrd 2775 . . . 4 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
40 eqid 2735 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
41 eqid 2735 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
42 1oex 8515 . . . . . . 7 1o ∈ V
4342a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
44 0lt1o 8541 . . . . . . 7 ∅ ∈ 1o
4544a1i 11 . . . . . 6 (𝜑 → ∅ ∈ 1o)
4640, 41, 22, 19, 43, 5, 45mvrval 22020 . . . . 5 (𝜑 → ((1o mVar 𝑅)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))))
4746coeq2d 5876 . . . 4 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
48 eqid 2735 . . . . 5 (1o mVar 𝑆) = (1o mVar 𝑆)
49 rhmrcl2 20494 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
503, 49syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
5148, 41, 33, 29, 43, 50, 45mvrval 22020 . . . 4 (𝜑 → ((1o mVar 𝑆)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
5239, 47, 513eqtr4d 2785 . . 3 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = ((1o mVar 𝑆)‘∅))
536vr1val 22209 . . . 4 𝑋 = ((1o mVar 𝑅)‘∅)
5453coeq2i 5874 . . 3 (𝐻𝑋) = (𝐻 ∘ ((1o mVar 𝑅)‘∅))
55 rhmply1vr1.y . . . 4 𝑌 = (var1𝑆)
5655vr1val 22209 . . 3 𝑌 = ((1o mVar 𝑆)‘∅)
5752, 54, 563eqtr4g 2800 . 2 (𝜑 → (𝐻𝑋) = 𝑌)
5814, 57eqtrd 2775 1 (𝜑 → (𝐹𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  c0 4339  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  1oc1o 8498  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  Basecbs 17245  0gc0g 17486   GrpHom cghm 19243  1rcur 20199  Ringcrg 20251   RingHom crh 20486   mVar cmvr 21943  var1cv1 22193  Poly1cpl1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-ple 17318  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199
This theorem is referenced by:  rhmply1mon  22409  aks5lem3a  42171
  Copyright terms: Public domain W3C validator