MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vr1 Structured version   Visualization version   GIF version

Theorem rhmply1vr1 22308
Description: A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vr1.p 𝑃 = (Poly1𝑅)
rhmply1vr1.q 𝑄 = (Poly1𝑆)
rhmply1vr1.b 𝐵 = (Base‘𝑃)
rhmply1vr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vr1.x 𝑋 = (var1𝑅)
rhmply1vr1.y 𝑌 = (var1𝑆)
rhmply1vr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmply1vr1 (𝜑 → (𝐹𝑋) = 𝑌)
Distinct variable groups:   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝑌(𝑝)

Proof of Theorem rhmply1vr1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
2 coeq2 5803 . . 3 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
3 rhmply1vr1.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
4 rhmrcl1 20400 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
6 rhmply1vr1.x . . . . 5 𝑋 = (var1𝑅)
7 rhmply1vr1.p . . . . 5 𝑃 = (Poly1𝑅)
8 rhmply1vr1.b . . . . 5 𝐵 = (Base‘𝑃)
96, 7, 8vr1cl 22136 . . . 4 (𝑅 ∈ Ring → 𝑋𝐵)
105, 9syl 17 . . 3 (𝜑𝑋𝐵)
116fvexi 6842 . . . . 5 𝑋 ∈ V
1211a1i 11 . . . 4 (𝜑𝑋 ∈ V)
133, 12coexd 7867 . . 3 (𝜑 → (𝐻𝑋) ∈ V)
141, 2, 10, 13fvmptd3 6958 . 2 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
15 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2731 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1715, 16rhmf 20408 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
183, 17syl 17 . . . . . 6 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
19 eqid 2731 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2015, 19ringidcl 20189 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
215, 20syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
22 eqid 2731 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2315, 22ring0cl 20191 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
245, 23syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2521, 24ifcld 4521 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2625adantr 480 . . . . . 6 ((𝜑𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2718, 26cofmpt 7071 . . . . 5 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
28 fvif 6844 . . . . . . 7 (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
29 eqid 2731 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
3019, 29rhm1 20412 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
32 rhmghm 20407 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
33 eqid 2731 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
3422, 33ghmid 19140 . . . . . . . . 9 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
353, 32, 343syl 18 . . . . . . . 8 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
3631, 35ifeq12d 4496 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3728, 36eqtrid 2778 . . . . . 6 (𝜑 → (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3837mpteq2dv 5187 . . . . 5 (𝜑 → (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
3927, 38eqtrd 2766 . . . 4 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
40 eqid 2731 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
41 eqid 2731 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
42 1oex 8401 . . . . . . 7 1o ∈ V
4342a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
44 0lt1o 8425 . . . . . . 7 ∅ ∈ 1o
4544a1i 11 . . . . . 6 (𝜑 → ∅ ∈ 1o)
4640, 41, 22, 19, 43, 5, 45mvrval 21925 . . . . 5 (𝜑 → ((1o mVar 𝑅)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))))
4746coeq2d 5807 . . . 4 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
48 eqid 2731 . . . . 5 (1o mVar 𝑆) = (1o mVar 𝑆)
49 rhmrcl2 20401 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
503, 49syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
5148, 41, 33, 29, 43, 50, 45mvrval 21925 . . . 4 (𝜑 → ((1o mVar 𝑆)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
5239, 47, 513eqtr4d 2776 . . 3 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = ((1o mVar 𝑆)‘∅))
536vr1val 22110 . . . 4 𝑋 = ((1o mVar 𝑅)‘∅)
5453coeq2i 5805 . . 3 (𝐻𝑋) = (𝐻 ∘ ((1o mVar 𝑅)‘∅))
55 rhmply1vr1.y . . . 4 𝑌 = (var1𝑆)
5655vr1val 22110 . . 3 𝑌 = ((1o mVar 𝑆)‘∅)
5752, 54, 563eqtr4g 2791 . 2 (𝜑 → (𝐻𝑋) = 𝑌)
5814, 57eqtrd 2766 1 (𝜑 → (𝐹𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  c0 4282  ifcif 4474  cmpt 5174  ccnv 5618  cima 5622  ccom 5623  wf 6483  cfv 6487  (class class class)co 7352  1oc1o 8384  m cmap 8756  Fincfn 8875  0cc0 11012  1c1 11013  cn 12131  0cn0 12387  Basecbs 17126  0gc0g 17349   GrpHom cghm 19130  1rcur 20105  Ringcrg 20157   RingHom crh 20393   mVar cmvr 21848  var1cv1 22094  Poly1cpl1 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-tset 17186  df-ple 17187  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-ghm 19131  df-mgp 20065  df-ur 20106  df-ring 20159  df-rhm 20396  df-psr 21852  df-mvr 21853  df-mpl 21854  df-opsr 21856  df-psr1 22098  df-vr1 22099  df-ply1 22100
This theorem is referenced by:  rhmply1mon  22310  aks5lem3a  42288
  Copyright terms: Public domain W3C validator