MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vr1 Structured version   Visualization version   GIF version

Theorem rhmply1vr1 22308
Description: A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vr1.p 𝑃 = (Poly1𝑅)
rhmply1vr1.q 𝑄 = (Poly1𝑆)
rhmply1vr1.b 𝐵 = (Base‘𝑃)
rhmply1vr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vr1.x 𝑋 = (var1𝑅)
rhmply1vr1.y 𝑌 = (var1𝑆)
rhmply1vr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmply1vr1 (𝜑 → (𝐹𝑋) = 𝑌)
Distinct variable groups:   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝑌(𝑝)

Proof of Theorem rhmply1vr1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
2 coeq2 5812 . . 3 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
3 rhmply1vr1.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
4 rhmrcl1 20397 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
6 rhmply1vr1.x . . . . 5 𝑋 = (var1𝑅)
7 rhmply1vr1.p . . . . 5 𝑃 = (Poly1𝑅)
8 rhmply1vr1.b . . . . 5 𝐵 = (Base‘𝑃)
96, 7, 8vr1cl 22136 . . . 4 (𝑅 ∈ Ring → 𝑋𝐵)
105, 9syl 17 . . 3 (𝜑𝑋𝐵)
116fvexi 6854 . . . . 5 𝑋 ∈ V
1211a1i 11 . . . 4 (𝜑𝑋 ∈ V)
133, 12coexd 7887 . . 3 (𝜑 → (𝐻𝑋) ∈ V)
141, 2, 10, 13fvmptd3 6973 . 2 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
15 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2729 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1715, 16rhmf 20406 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
183, 17syl 17 . . . . . 6 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
19 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2015, 19ringidcl 20186 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
215, 20syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
22 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2315, 22ring0cl 20188 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
245, 23syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2521, 24ifcld 4531 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2625adantr 480 . . . . . 6 ((𝜑𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2718, 26cofmpt 7086 . . . . 5 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
28 fvif 6856 . . . . . . 7 (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
29 eqid 2729 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
3019, 29rhm1 20410 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
32 rhmghm 20405 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
33 eqid 2729 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
3422, 33ghmid 19137 . . . . . . . . 9 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
353, 32, 343syl 18 . . . . . . . 8 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
3631, 35ifeq12d 4506 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3728, 36eqtrid 2776 . . . . . 6 (𝜑 → (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3837mpteq2dv 5196 . . . . 5 (𝜑 → (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
3927, 38eqtrd 2764 . . . 4 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
40 eqid 2729 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
41 eqid 2729 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
42 1oex 8421 . . . . . . 7 1o ∈ V
4342a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
44 0lt1o 8445 . . . . . . 7 ∅ ∈ 1o
4544a1i 11 . . . . . 6 (𝜑 → ∅ ∈ 1o)
4640, 41, 22, 19, 43, 5, 45mvrval 21925 . . . . 5 (𝜑 → ((1o mVar 𝑅)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))))
4746coeq2d 5816 . . . 4 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
48 eqid 2729 . . . . 5 (1o mVar 𝑆) = (1o mVar 𝑆)
49 rhmrcl2 20398 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
503, 49syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
5148, 41, 33, 29, 43, 50, 45mvrval 21925 . . . 4 (𝜑 → ((1o mVar 𝑆)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
5239, 47, 513eqtr4d 2774 . . 3 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = ((1o mVar 𝑆)‘∅))
536vr1val 22110 . . . 4 𝑋 = ((1o mVar 𝑅)‘∅)
5453coeq2i 5814 . . 3 (𝐻𝑋) = (𝐻 ∘ ((1o mVar 𝑅)‘∅))
55 rhmply1vr1.y . . . 4 𝑌 = (var1𝑆)
5655vr1val 22110 . . 3 𝑌 = ((1o mVar 𝑆)‘∅)
5752, 54, 563eqtr4g 2789 . 2 (𝜑 → (𝐻𝑋) = 𝑌)
5814, 57eqtrd 2764 1 (𝜑 → (𝐹𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  c0 4292  ifcif 4484  cmpt 5183  ccnv 5630  cima 5634  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  1oc1o 8404  m cmap 8776  Fincfn 8895  0cc0 11046  1c1 11047  cn 12164  0cn0 12420  Basecbs 17156  0gc0g 17379   GrpHom cghm 19127  1rcur 20102  Ringcrg 20154   RingHom crh 20390   mVar cmvr 21848  var1cv1 22094  Poly1cpl1 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-tset 17216  df-ple 17217  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-ghm 19128  df-mgp 20062  df-ur 20103  df-ring 20156  df-rhm 20393  df-psr 21852  df-mvr 21853  df-mpl 21854  df-opsr 21856  df-psr1 22098  df-vr1 22099  df-ply1 22100
This theorem is referenced by:  rhmply1mon  22310  aks5lem3a  42171
  Copyright terms: Public domain W3C validator