MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vr1 Structured version   Visualization version   GIF version

Theorem rhmply1vr1 22281
Description: A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vr1.p 𝑃 = (Poly1𝑅)
rhmply1vr1.q 𝑄 = (Poly1𝑆)
rhmply1vr1.b 𝐵 = (Base‘𝑃)
rhmply1vr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vr1.x 𝑋 = (var1𝑅)
rhmply1vr1.y 𝑌 = (var1𝑆)
rhmply1vr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmply1vr1 (𝜑 → (𝐹𝑋) = 𝑌)
Distinct variable groups:   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝑌(𝑝)

Proof of Theorem rhmply1vr1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
2 coeq2 5825 . . 3 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
3 rhmply1vr1.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
4 rhmrcl1 20392 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
6 rhmply1vr1.x . . . . 5 𝑋 = (var1𝑅)
7 rhmply1vr1.p . . . . 5 𝑃 = (Poly1𝑅)
8 rhmply1vr1.b . . . . 5 𝐵 = (Base‘𝑃)
96, 7, 8vr1cl 22109 . . . 4 (𝑅 ∈ Ring → 𝑋𝐵)
105, 9syl 17 . . 3 (𝜑𝑋𝐵)
116fvexi 6875 . . . . 5 𝑋 ∈ V
1211a1i 11 . . . 4 (𝜑𝑋 ∈ V)
133, 12coexd 7910 . . 3 (𝜑 → (𝐻𝑋) ∈ V)
141, 2, 10, 13fvmptd3 6994 . 2 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
15 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2730 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1715, 16rhmf 20401 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
183, 17syl 17 . . . . . 6 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
19 eqid 2730 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2015, 19ringidcl 20181 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
215, 20syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
22 eqid 2730 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2315, 22ring0cl 20183 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
245, 23syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2521, 24ifcld 4538 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2625adantr 480 . . . . . 6 ((𝜑𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2718, 26cofmpt 7107 . . . . 5 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
28 fvif 6877 . . . . . . 7 (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
29 eqid 2730 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
3019, 29rhm1 20405 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
32 rhmghm 20400 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
33 eqid 2730 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
3422, 33ghmid 19161 . . . . . . . . 9 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
353, 32, 343syl 18 . . . . . . . 8 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
3631, 35ifeq12d 4513 . . . . . . 7 (𝜑 → if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3728, 36eqtrid 2777 . . . . . 6 (𝜑 → (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))) = if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆)))
3837mpteq2dv 5204 . . . . 5 (𝜑 → (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
3927, 38eqtrd 2765 . . . 4 (𝜑 → (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
40 eqid 2730 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
41 eqid 2730 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
42 1oex 8447 . . . . . . 7 1o ∈ V
4342a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
44 0lt1o 8471 . . . . . . 7 ∅ ∈ 1o
4544a1i 11 . . . . . 6 (𝜑 → ∅ ∈ 1o)
4640, 41, 22, 19, 43, 5, 45mvrval 21898 . . . . 5 (𝜑 → ((1o mVar 𝑅)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅))))
4746coeq2d 5829 . . . 4 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = (𝐻 ∘ (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑅), (0g𝑅)))))
48 eqid 2730 . . . . 5 (1o mVar 𝑆) = (1o mVar 𝑆)
49 rhmrcl2 20393 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
503, 49syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
5148, 41, 33, 29, 43, 50, 45mvrval 21898 . . . 4 (𝜑 → ((1o mVar 𝑆)‘∅) = (𝑓 ∈ { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 1o ↦ if(𝑦 = ∅, 1, 0)), (1r𝑆), (0g𝑆))))
5239, 47, 513eqtr4d 2775 . . 3 (𝜑 → (𝐻 ∘ ((1o mVar 𝑅)‘∅)) = ((1o mVar 𝑆)‘∅))
536vr1val 22083 . . . 4 𝑋 = ((1o mVar 𝑅)‘∅)
5453coeq2i 5827 . . 3 (𝐻𝑋) = (𝐻 ∘ ((1o mVar 𝑅)‘∅))
55 rhmply1vr1.y . . . 4 𝑌 = (var1𝑆)
5655vr1val 22083 . . 3 𝑌 = ((1o mVar 𝑆)‘∅)
5752, 54, 563eqtr4g 2790 . 2 (𝜑 → (𝐻𝑋) = 𝑌)
5814, 57eqtrd 2765 1 (𝜑 → (𝐹𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  c0 4299  ifcif 4491  cmpt 5191  ccnv 5640  cima 5644  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  1oc1o 8430  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076  cn 12193  0cn0 12449  Basecbs 17186  0gc0g 17409   GrpHom cghm 19151  1rcur 20097  Ringcrg 20149   RingHom crh 20385   mVar cmvr 21821  var1cv1 22067  Poly1cpl1 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-rhm 20388  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073
This theorem is referenced by:  rhmply1mon  22283  aks5lem3a  42184
  Copyright terms: Public domain W3C validator