| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgrhm2 | Structured version Visualization version GIF version | ||
| Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) |
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
| mulgrhm.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| mulgrhm2 | ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas 21363 | . . . . . . . . . 10 ⊢ ℤ = (Base‘ℤring) | |
| 2 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | rhmf 20394 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅)) |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅)) |
| 5 | 4 | feqmptd 6929 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓‘𝑛))) |
| 6 | rhmghm 20393 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | |
| 7 | 6 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅)) |
| 8 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 9 | 1zzd 12564 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ) | |
| 10 | eqid 2729 | . . . . . . . . . . 11 ⊢ (.g‘ℤring) = (.g‘ℤring) | |
| 11 | mulgghm2.m | . . . . . . . . . . 11 ⊢ · = (.g‘𝑅) | |
| 12 | 1, 10, 11 | ghmmulg 19160 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
| 13 | 7, 8, 9, 12 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
| 14 | ax-1cn 11126 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
| 15 | cnfldmulg 21315 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | |
| 16 | 14, 15 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
| 17 | 1z 12563 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℤ | |
| 18 | 16 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
| 19 | zringmulg 21366 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | eqtr4d 2767 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
| 21 | 17, 20 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
| 22 | zcn 12534 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 23 | 22 | mulridd 11191 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
| 24 | 16, 21, 23 | 3eqtr3d 2772 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛) |
| 25 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛) |
| 26 | 25 | fveq2d 6862 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓‘𝑛)) |
| 27 | zring1 21369 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℤring) | |
| 28 | mulgrhm.1 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘𝑅) | |
| 29 | 27, 28 | rhm1 20398 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 ) |
| 30 | 29 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 ) |
| 31 | 30 | oveq2d 7403 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 )) |
| 32 | 13, 26, 31 | 3eqtr3d 2772 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘𝑛) = (𝑛 · 1 )) |
| 33 | 32 | mpteq2dva 5200 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓‘𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 34 | 5, 33 | eqtrd 2764 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 35 | mulgghm2.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 36 | 34, 35 | eqtr4di 2782 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹) |
| 37 | velsn 4605 | . . . . 5 ⊢ (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹) | |
| 38 | 36, 37 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹}) |
| 39 | 38 | ex 412 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹})) |
| 40 | 39 | ssrdv 3952 | . 2 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹}) |
| 41 | 11, 35, 28 | mulgrhm 21387 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) |
| 42 | 41 | snssd 4773 | . 2 ⊢ (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅)) |
| 43 | 40, 42 | eqssd 3964 | 1 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 · cmul 11073 ℤcz 12529 Basecbs 17179 .gcmg 18999 GrpHom cghm 19144 1rcur 20090 Ringcrg 20142 RingHom crh 20378 ℂfldccnfld 21264 ℤringczring 21356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-cnfld 21265 df-zring 21357 |
| This theorem is referenced by: irinitoringc 21389 zrhval2 21418 zrhrhmb 21420 |
| Copyright terms: Public domain | W3C validator |