MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm2 Structured version   Visualization version   GIF version

Theorem mulgrhm2 20638
Description: The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 zringbas 20615 . . . . . . . . . 10 ℤ = (Base‘ℤring)
2 eqid 2819 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31, 2rhmf 19470 . . . . . . . . 9 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅))
43adantl 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅))
54feqmptd 6726 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓𝑛)))
6 rhmghm 19469 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅))
76ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅))
8 simpr 487 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
9 1zzd 12005 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
10 eqid 2819 . . . . . . . . . . 11 (.g‘ℤring) = (.g‘ℤring)
11 mulgghm2.m . . . . . . . . . . 11 · = (.g𝑅)
121, 10, 11ghmmulg 18362 . . . . . . . . . 10 ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
137, 8, 9, 12syl3anc 1365 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
14 ax-1cn 10587 . . . . . . . . . . . . 13 1 ∈ ℂ
15 cnfldmulg 20569 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
1614, 15mpan2 689 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
17 1z 12004 . . . . . . . . . . . . 13 1 ∈ ℤ
1816adantr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
19 zringmulg 20617 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1))
2018, 19eqtr4d 2857 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
2117, 20mpan2 689 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
22 zcn 11978 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322mulid1d 10650 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2416, 21, 233eqtr3d 2862 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛)
2524adantl 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛)
2625fveq2d 6667 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓𝑛))
27 zring1 20620 . . . . . . . . . . . 12 1 = (1r‘ℤring)
28 mulgrhm.1 . . . . . . . . . . . 12 1 = (1r𝑅)
2927, 28rhm1 19474 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 )
3029ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 )
3130oveq2d 7164 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 ))
3213, 26, 313eqtr3d 2862 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓𝑛) = (𝑛 · 1 ))
3332mpteq2dva 5152 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
345, 33eqtrd 2854 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
35 mulgghm2.f . . . . . 6 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
3634, 35syl6eqr 2872 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹)
37 velsn 4575 . . . . 5 (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹)
3836, 37sylibr 236 . . . 4 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹})
3938ex 415 . . 3 (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹}))
4039ssrdv 3971 . 2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹})
4111, 35, 28mulgrhm 20637 . . 3 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
4241snssd 4734 . 2 (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅))
4340, 42eqssd 3982 1 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  {csn 4559  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  1c1 10530   · cmul 10534  cz 11973  Basecbs 16475  .gcmg 18216   GrpHom cghm 18347  1rcur 19243  Ringcrg 19289   RingHom crh 19456  fldccnfld 20537  ringzring 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-seq 13362  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-rnghom 19459  df-subrg 19525  df-cnfld 20538  df-zring 20610
This theorem is referenced by:  zrhval2  20648  zrhrhmb  20650  irinitoringc  44325
  Copyright terms: Public domain W3C validator