MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm2 Structured version   Visualization version   GIF version

Theorem mulgrhm2 20645
Description: The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 zringbas 20622 . . . . . . . . . 10 ℤ = (Base‘ℤring)
2 eqid 2821 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31, 2rhmf 19477 . . . . . . . . 9 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅))
43adantl 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅))
54feqmptd 6732 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓𝑛)))
6 rhmghm 19476 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅))
76ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅))
8 simpr 487 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
9 1zzd 12012 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
10 eqid 2821 . . . . . . . . . . 11 (.g‘ℤring) = (.g‘ℤring)
11 mulgghm2.m . . . . . . . . . . 11 · = (.g𝑅)
121, 10, 11ghmmulg 18369 . . . . . . . . . 10 ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
137, 8, 9, 12syl3anc 1367 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
14 ax-1cn 10594 . . . . . . . . . . . . 13 1 ∈ ℂ
15 cnfldmulg 20576 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
1614, 15mpan2 689 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
17 1z 12011 . . . . . . . . . . . . 13 1 ∈ ℤ
1816adantr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
19 zringmulg 20624 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1))
2018, 19eqtr4d 2859 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
2117, 20mpan2 689 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
22 zcn 11985 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322mulid1d 10657 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2416, 21, 233eqtr3d 2864 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛)
2524adantl 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛)
2625fveq2d 6673 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓𝑛))
27 zring1 20627 . . . . . . . . . . . 12 1 = (1r‘ℤring)
28 mulgrhm.1 . . . . . . . . . . . 12 1 = (1r𝑅)
2927, 28rhm1 19481 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 )
3029ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 )
3130oveq2d 7171 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 ))
3213, 26, 313eqtr3d 2864 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓𝑛) = (𝑛 · 1 ))
3332mpteq2dva 5160 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
345, 33eqtrd 2856 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
35 mulgghm2.f . . . . . 6 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
3634, 35syl6eqr 2874 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹)
37 velsn 4582 . . . . 5 (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹)
3836, 37sylibr 236 . . . 4 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹})
3938ex 415 . . 3 (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹}))
4039ssrdv 3972 . 2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹})
4111, 35, 28mulgrhm 20644 . . 3 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
4241snssd 4741 . 2 (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅))
4340, 42eqssd 3983 1 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {csn 4566  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  1c1 10537   · cmul 10541  cz 11980  Basecbs 16482  .gcmg 18223   GrpHom cghm 18354  1rcur 19250  Ringcrg 19296   RingHom crh 19463  fldccnfld 20544  ringzring 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-seq 13369  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-minusg 18106  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cmn 18907  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-rnghom 19466  df-subrg 19532  df-cnfld 20545  df-zring 20617
This theorem is referenced by:  zrhval2  20655  zrhrhmb  20657  irinitoringc  44339
  Copyright terms: Public domain W3C validator