MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm2 Structured version   Visualization version   GIF version

Theorem mulgrhm2 21388
Description: The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 zringbas 21363 . . . . . . . . . 10 ℤ = (Base‘ℤring)
2 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31, 2rhmf 20394 . . . . . . . . 9 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅))
43adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅))
54feqmptd 6929 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓𝑛)))
6 rhmghm 20393 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅))
76ad2antlr 727 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅))
8 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
9 1zzd 12564 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
10 eqid 2729 . . . . . . . . . . 11 (.g‘ℤring) = (.g‘ℤring)
11 mulgghm2.m . . . . . . . . . . 11 · = (.g𝑅)
121, 10, 11ghmmulg 19160 . . . . . . . . . 10 ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
137, 8, 9, 12syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
14 ax-1cn 11126 . . . . . . . . . . . . 13 1 ∈ ℂ
15 cnfldmulg 21315 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
1614, 15mpan2 691 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
17 1z 12563 . . . . . . . . . . . . 13 1 ∈ ℤ
1816adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
19 zringmulg 21366 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1))
2018, 19eqtr4d 2767 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
2117, 20mpan2 691 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
22 zcn 12534 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322mulridd 11191 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2416, 21, 233eqtr3d 2772 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛)
2524adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛)
2625fveq2d 6862 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓𝑛))
27 zring1 21369 . . . . . . . . . . . 12 1 = (1r‘ℤring)
28 mulgrhm.1 . . . . . . . . . . . 12 1 = (1r𝑅)
2927, 28rhm1 20398 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 )
3029ad2antlr 727 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 )
3130oveq2d 7403 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 ))
3213, 26, 313eqtr3d 2772 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓𝑛) = (𝑛 · 1 ))
3332mpteq2dva 5200 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
345, 33eqtrd 2764 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
35 mulgghm2.f . . . . . 6 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
3634, 35eqtr4di 2782 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹)
37 velsn 4605 . . . . 5 (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹)
3836, 37sylibr 234 . . . 4 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹})
3938ex 412 . . 3 (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹}))
4039ssrdv 3952 . 2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹})
4111, 35, 28mulgrhm 21387 . . 3 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
4241snssd 4773 . 2 (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅))
4340, 42eqssd 3964 1 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   · cmul 11073  cz 12529  Basecbs 17179  .gcmg 18999   GrpHom cghm 19144  1rcur 20090  Ringcrg 20142   RingHom crh 20378  fldccnfld 21264  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  irinitoringc  21389  zrhval2  21418  zrhrhmb  21420
  Copyright terms: Public domain W3C validator