Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgrhm2 | Structured version Visualization version GIF version |
Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
mulgghm2.m | ⊢ · = (.g‘𝑅) |
mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
mulgrhm.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
mulgrhm2 | ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringbas 20676 | . . . . . . . . . 10 ⊢ ℤ = (Base‘ℤring) | |
2 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | rhmf 19970 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅)) |
4 | 3 | adantl 482 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅)) |
5 | 4 | feqmptd 6837 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓‘𝑛))) |
6 | rhmghm 19969 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | |
7 | 6 | ad2antlr 724 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅)) |
8 | simpr 485 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
9 | 1zzd 12351 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ) | |
10 | eqid 2738 | . . . . . . . . . . 11 ⊢ (.g‘ℤring) = (.g‘ℤring) | |
11 | mulgghm2.m | . . . . . . . . . . 11 ⊢ · = (.g‘𝑅) | |
12 | 1, 10, 11 | ghmmulg 18846 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
13 | 7, 8, 9, 12 | syl3anc 1370 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
14 | ax-1cn 10929 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
15 | cnfldmulg 20630 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | |
16 | 14, 15 | mpan2 688 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
17 | 1z 12350 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℤ | |
18 | 16 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
19 | zringmulg 20678 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1)) | |
20 | 18, 19 | eqtr4d 2781 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
21 | 17, 20 | mpan2 688 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
22 | zcn 12324 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
23 | 22 | mulid1d 10992 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
24 | 16, 21, 23 | 3eqtr3d 2786 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛) |
25 | 24 | adantl 482 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛) |
26 | 25 | fveq2d 6778 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓‘𝑛)) |
27 | zring1 20681 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℤring) | |
28 | mulgrhm.1 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘𝑅) | |
29 | 27, 28 | rhm1 19974 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 ) |
30 | 29 | ad2antlr 724 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 ) |
31 | 30 | oveq2d 7291 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 )) |
32 | 13, 26, 31 | 3eqtr3d 2786 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘𝑛) = (𝑛 · 1 )) |
33 | 32 | mpteq2dva 5174 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓‘𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
34 | 5, 33 | eqtrd 2778 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
35 | mulgghm2.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
36 | 34, 35 | eqtr4di 2796 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹) |
37 | velsn 4577 | . . . . 5 ⊢ (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹) | |
38 | 36, 37 | sylibr 233 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹}) |
39 | 38 | ex 413 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹})) |
40 | 39 | ssrdv 3927 | . 2 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹}) |
41 | 11, 35, 28 | mulgrhm 20699 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) |
42 | 41 | snssd 4742 | . 2 ⊢ (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅)) |
43 | 40, 42 | eqssd 3938 | 1 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 · cmul 10876 ℤcz 12319 Basecbs 16912 .gcmg 18700 GrpHom cghm 18831 1rcur 19737 Ringcrg 19783 RingHom crh 19956 ℂfldccnfld 20597 ℤringczring 20670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-seq 13722 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-cnfld 20598 df-zring 20671 |
This theorem is referenced by: zrhval2 20710 zrhrhmb 20712 irinitoringc 45627 |
Copyright terms: Public domain | W3C validator |