| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgrhm2 | Structured version Visualization version GIF version | ||
| Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) |
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
| mulgrhm.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| mulgrhm2 | ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas 21370 | . . . . . . . . . 10 ⊢ ℤ = (Base‘ℤring) | |
| 2 | eqid 2730 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | rhmf 20401 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅)) |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅)) |
| 5 | 4 | feqmptd 6932 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓‘𝑛))) |
| 6 | rhmghm 20400 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | |
| 7 | 6 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅)) |
| 8 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 9 | 1zzd 12571 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ) | |
| 10 | eqid 2730 | . . . . . . . . . . 11 ⊢ (.g‘ℤring) = (.g‘ℤring) | |
| 11 | mulgghm2.m | . . . . . . . . . . 11 ⊢ · = (.g‘𝑅) | |
| 12 | 1, 10, 11 | ghmmulg 19167 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
| 13 | 7, 8, 9, 12 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
| 14 | ax-1cn 11133 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
| 15 | cnfldmulg 21322 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | |
| 16 | 14, 15 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
| 17 | 1z 12570 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℤ | |
| 18 | 16 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
| 19 | zringmulg 21373 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | eqtr4d 2768 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
| 21 | 17, 20 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
| 22 | zcn 12541 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 23 | 22 | mulridd 11198 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
| 24 | 16, 21, 23 | 3eqtr3d 2773 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛) |
| 25 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛) |
| 26 | 25 | fveq2d 6865 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓‘𝑛)) |
| 27 | zring1 21376 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℤring) | |
| 28 | mulgrhm.1 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘𝑅) | |
| 29 | 27, 28 | rhm1 20405 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 ) |
| 30 | 29 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 ) |
| 31 | 30 | oveq2d 7406 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 )) |
| 32 | 13, 26, 31 | 3eqtr3d 2773 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘𝑛) = (𝑛 · 1 )) |
| 33 | 32 | mpteq2dva 5203 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓‘𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 34 | 5, 33 | eqtrd 2765 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 35 | mulgghm2.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 36 | 34, 35 | eqtr4di 2783 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹) |
| 37 | velsn 4608 | . . . . 5 ⊢ (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹) | |
| 38 | 36, 37 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹}) |
| 39 | 38 | ex 412 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹})) |
| 40 | 39 | ssrdv 3955 | . 2 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹}) |
| 41 | 11, 35, 28 | mulgrhm 21394 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) |
| 42 | 41 | snssd 4776 | . 2 ⊢ (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅)) |
| 43 | 40, 42 | eqssd 3967 | 1 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 1c1 11076 · cmul 11080 ℤcz 12536 Basecbs 17186 .gcmg 19006 GrpHom cghm 19151 1rcur 20097 Ringcrg 20149 RingHom crh 20385 ℂfldccnfld 21271 ℤringczring 21363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-seq 13974 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-cnfld 21272 df-zring 21364 |
| This theorem is referenced by: irinitoringc 21396 zrhval2 21425 zrhrhmb 21427 |
| Copyright terms: Public domain | W3C validator |