![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlmcl | Structured version Visualization version GIF version |
Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | โข ๐ = (LIdealโ๐ ) |
lidlcl.b | โข ๐ต = (Baseโ๐ ) |
lidlmcl.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
lidlmcl | โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ (๐ ยท ๐) โ ๐ผ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlmcl.t | . . . 4 โข ยท = (.rโ๐ ) | |
2 | rlmvsca 20816 | . . . 4 โข (.rโ๐ ) = ( ยท๐ โ(ringLModโ๐ )) | |
3 | 1, 2 | eqtri 2760 | . . 3 โข ยท = ( ยท๐ โ(ringLModโ๐ )) |
4 | 3 | oveqi 7418 | . 2 โข (๐ ยท ๐) = (๐( ยท๐ โ(ringLModโ๐ ))๐) |
5 | rlmlmod 20819 | . . . 4 โข (๐ โ Ring โ (ringLModโ๐ ) โ LMod) | |
6 | 5 | ad2antrr 724 | . . 3 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ (ringLModโ๐ ) โ LMod) |
7 | simpr 485 | . . . . 5 โข ((๐ โ Ring โง ๐ผ โ ๐) โ ๐ผ โ ๐) | |
8 | lidlcl.u | . . . . . 6 โข ๐ = (LIdealโ๐ ) | |
9 | lidlval 20806 | . . . . . 6 โข (LIdealโ๐ ) = (LSubSpโ(ringLModโ๐ )) | |
10 | 8, 9 | eqtri 2760 | . . . . 5 โข ๐ = (LSubSpโ(ringLModโ๐ )) |
11 | 7, 10 | eleqtrdi 2843 | . . . 4 โข ((๐ โ Ring โง ๐ผ โ ๐) โ ๐ผ โ (LSubSpโ(ringLModโ๐ ))) |
12 | 11 | adantr 481 | . . 3 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ ๐ผ โ (LSubSpโ(ringLModโ๐ ))) |
13 | lidlcl.b | . . . . . . 7 โข ๐ต = (Baseโ๐ ) | |
14 | rlmsca 20814 | . . . . . . . 8 โข (๐ โ Ring โ ๐ = (Scalarโ(ringLModโ๐ ))) | |
15 | 14 | fveq2d 6892 | . . . . . . 7 โข (๐ โ Ring โ (Baseโ๐ ) = (Baseโ(Scalarโ(ringLModโ๐ )))) |
16 | 13, 15 | eqtrid 2784 | . . . . . 6 โข (๐ โ Ring โ ๐ต = (Baseโ(Scalarโ(ringLModโ๐ )))) |
17 | 16 | eleq2d 2819 | . . . . 5 โข (๐ โ Ring โ (๐ โ ๐ต โ ๐ โ (Baseโ(Scalarโ(ringLModโ๐ ))))) |
18 | 17 | biimpa 477 | . . . 4 โข ((๐ โ Ring โง ๐ โ ๐ต) โ ๐ โ (Baseโ(Scalarโ(ringLModโ๐ )))) |
19 | 18 | ad2ant2r 745 | . . 3 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ ๐ โ (Baseโ(Scalarโ(ringLModโ๐ )))) |
20 | simprr 771 | . . 3 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ ๐ โ ๐ผ) | |
21 | eqid 2732 | . . . 4 โข (Scalarโ(ringLModโ๐ )) = (Scalarโ(ringLModโ๐ )) | |
22 | eqid 2732 | . . . 4 โข ( ยท๐ โ(ringLModโ๐ )) = ( ยท๐ โ(ringLModโ๐ )) | |
23 | eqid 2732 | . . . 4 โข (Baseโ(Scalarโ(ringLModโ๐ ))) = (Baseโ(Scalarโ(ringLModโ๐ ))) | |
24 | eqid 2732 | . . . 4 โข (LSubSpโ(ringLModโ๐ )) = (LSubSpโ(ringLModโ๐ )) | |
25 | 21, 22, 23, 24 | lssvscl 20558 | . . 3 โข ((((ringLModโ๐ ) โ LMod โง ๐ผ โ (LSubSpโ(ringLModโ๐ ))) โง (๐ โ (Baseโ(Scalarโ(ringLModโ๐ ))) โง ๐ โ ๐ผ)) โ (๐( ยท๐ โ(ringLModโ๐ ))๐) โ ๐ผ) |
26 | 6, 12, 19, 20, 25 | syl22anc 837 | . 2 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ (๐( ยท๐ โ(ringLModโ๐ ))๐) โ ๐ผ) |
27 | 4, 26 | eqeltrid 2837 | 1 โข (((๐ โ Ring โง ๐ผ โ ๐) โง (๐ โ ๐ต โง ๐ โ ๐ผ)) โ (๐ ยท ๐) โ ๐ผ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 โcfv 6540 (class class class)co 7405 Basecbs 17140 .rcmulr 17194 Scalarcsca 17196 ยท๐ cvsca 17197 Ringcrg 20049 LModclmod 20463 LSubSpclss 20534 ringLModcrglmod 20774 LIdealclidl 20775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19982 df-ur 19999 df-ring 20051 df-subrg 20353 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 |
This theorem is referenced by: lidl1el 20833 dflidl2 20835 drngnidl 20846 2idlcpbl 20863 zringlpirlem3 21025 ig1peu 25680 ig1pdvds 25685 ringlsmss1 32494 ringlsmss2 32495 intlidl 32524 rhmpreimaidl 32525 lidlunitel 32529 elrspunidl 32534 idlinsubrg 32537 isprmidlc 32554 mxidlprm 32574 ssmxidllem 32577 qsdrnglem2 32598 hbtlem2 41851 hbtlem4 41853 |
Copyright terms: Public domain | W3C validator |