Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlmcl | Structured version Visualization version GIF version |
Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlcl.b | ⊢ 𝐵 = (Base‘𝑅) |
lidlmcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
lidlmcl | ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlmcl.t | . . . 4 ⊢ · = (.r‘𝑅) | |
2 | rlmvsca 20453 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
3 | 1, 2 | eqtri 2767 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
4 | 3 | oveqi 7281 | . 2 ⊢ (𝑋 · 𝑌) = (𝑋( ·𝑠 ‘(ringLMod‘𝑅))𝑌) |
5 | rlmlmod 20456 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
6 | 5 | ad2antrr 722 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (ringLMod‘𝑅) ∈ LMod) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
8 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
9 | lidlval 20443 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2767 | . . . . 5 ⊢ 𝑈 = (LSubSp‘(ringLMod‘𝑅)) |
11 | 7, 10 | eleqtrdi 2850 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
13 | lidlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
14 | rlmsca 20451 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
15 | 14 | fveq2d 6772 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
16 | 13, 15 | eqtrid 2791 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
17 | 16 | eleq2d 2825 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))) |
18 | 17 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
19 | 18 | ad2ant2r 743 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → 𝑋 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
20 | simprr 769 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → 𝑌 ∈ 𝐼) | |
21 | eqid 2739 | . . . 4 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
22 | eqid 2739 | . . . 4 ⊢ ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
23 | eqid 2739 | . . . 4 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
24 | eqid 2739 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
25 | 21, 22, 23, 24 | lssvscl 20198 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) ∧ (𝑋 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑌 ∈ 𝐼)) → (𝑋( ·𝑠 ‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
26 | 6, 12, 19, 20, 25 | syl22anc 835 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋( ·𝑠 ‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
27 | 4, 26 | eqeltrid 2844 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 .rcmulr 16944 Scalarcsca 16946 ·𝑠 cvsca 16947 Ringcrg 19764 LModclmod 20104 LSubSpclss 20174 ringLModcrglmod 20412 LIdealclidl 20413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-mgp 19702 df-ur 19719 df-ring 19766 df-subrg 20003 df-lmod 20106 df-lss 20175 df-sra 20415 df-rgmod 20416 df-lidl 20417 |
This theorem is referenced by: lidl1el 20470 drngnidl 20481 2idlcpbl 20486 zringlpirlem3 20667 ig1peu 25317 ig1pdvds 25322 ringlsmss1 31563 ringlsmss2 31564 intlidl 31581 rhmpreimaidl 31582 elrspunidl 31585 idlinsubrg 31587 isprmidlc 31602 mxidlprm 31619 ssmxidllem 31620 hbtlem2 40929 hbtlem4 40931 lidlmmgm 45435 |
Copyright terms: Public domain | W3C validator |