| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rng1nnzr | Structured version Visualization version GIF version | ||
| Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| rng1nnzr.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
| Ref | Expression |
|---|---|
| rng1nnzr | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5375 | . . . . . . 7 ⊢ {𝑍} ∈ V | |
| 2 | rng1nnzr.m | . . . . . . . 8 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
| 3 | 2 | rngbase 17203 | . . . . . . 7 ⊢ ({𝑍} ∈ V → {𝑍} = (Base‘𝑀)) |
| 4 | 1, 3 | mp1i 13 | . . . . . 6 ⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) |
| 5 | 4 | eqcomd 2735 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = {𝑍}) |
| 6 | 5 | fveq2d 6826 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = (♯‘{𝑍})) |
| 7 | hashsng 14276 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘{𝑍}) = 1) | |
| 8 | 6, 7 | eqtrd 2764 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = 1) |
| 9 | 2 | ring1 20195 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |
| 10 | 0ringnnzr 20410 | . . . 4 ⊢ (𝑀 ∈ Ring → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) |
| 12 | 8, 11 | mpbid 232 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
| 13 | df-nel 3030 | . 2 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3436 {csn 4577 {ctp 4581 〈cop 4583 ‘cfv 6482 1c1 11010 ♯chash 14237 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Ringcrg 20118 NzRingcnzr 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-nzr 20398 |
| This theorem is referenced by: rng1nfld 20664 lmod1zrnlvec 48479 |
| Copyright terms: Public domain | W3C validator |