![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rng1nnzr | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
rng1nnzr.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
Ref | Expression |
---|---|
rng1nnzr | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5442 | . . . . . . 7 ⊢ {𝑍} ∈ V | |
2 | rng1nnzr.m | . . . . . . . 8 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
3 | 2 | rngbase 17345 | . . . . . . 7 ⊢ ({𝑍} ∈ V → {𝑍} = (Base‘𝑀)) |
4 | 1, 3 | mp1i 13 | . . . . . 6 ⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) |
5 | 4 | eqcomd 2741 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = {𝑍}) |
6 | 5 | fveq2d 6911 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = (♯‘{𝑍})) |
7 | hashsng 14405 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘{𝑍}) = 1) | |
8 | 6, 7 | eqtrd 2775 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = 1) |
9 | 2 | ring1 20324 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |
10 | 0ringnnzr 20542 | . . . 4 ⊢ (𝑀 ∈ Ring → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) |
12 | 8, 11 | mpbid 232 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
13 | df-nel 3045 | . 2 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 Vcvv 3478 {csn 4631 {ctp 4635 〈cop 4637 ‘cfv 6563 1c1 11154 ♯chash 14366 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 Ringcrg 20251 NzRingcnzr 20529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-nzr 20530 |
This theorem is referenced by: rng1nfld 20797 lmod1zrnlvec 48340 |
Copyright terms: Public domain | W3C validator |