| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rng1nnzr | Structured version Visualization version GIF version | ||
| Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| rng1nnzr.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
| Ref | Expression |
|---|---|
| rng1nnzr | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5369 | . . . . . . 7 ⊢ {𝑍} ∈ V | |
| 2 | rng1nnzr.m | . . . . . . . 8 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
| 3 | 2 | rngbase 17198 | . . . . . . 7 ⊢ ({𝑍} ∈ V → {𝑍} = (Base‘𝑀)) |
| 4 | 1, 3 | mp1i 13 | . . . . . 6 ⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) |
| 5 | 4 | eqcomd 2737 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = {𝑍}) |
| 6 | 5 | fveq2d 6821 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = (♯‘{𝑍})) |
| 7 | hashsng 14271 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘{𝑍}) = 1) | |
| 8 | 6, 7 | eqtrd 2766 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = 1) |
| 9 | 2 | ring1 20223 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |
| 10 | 0ringnnzr 20435 | . . . 4 ⊢ (𝑀 ∈ Ring → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) |
| 12 | 8, 11 | mpbid 232 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
| 13 | df-nel 3033 | . 2 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 {csn 4571 {ctp 4575 〈cop 4577 ‘cfv 6476 1c1 11002 ♯chash 14232 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Ringcrg 20146 NzRingcnzr 20422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-nzr 20423 |
| This theorem is referenced by: rng1nfld 20689 lmod1zrnlvec 48526 |
| Copyright terms: Public domain | W3C validator |