Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rng1nnzr | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
rng1nnzr.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
Ref | Expression |
---|---|
rng1nnzr | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5339 | . . . . . . 7 ⊢ {𝑍} ∈ V | |
2 | rng1nnzr.m | . . . . . . . 8 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
3 | 2 | rngbase 16867 | . . . . . . 7 ⊢ ({𝑍} ∈ V → {𝑍} = (Base‘𝑀)) |
4 | 1, 3 | mp1i 13 | . . . . . 6 ⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) |
5 | 4 | eqcomd 2744 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = {𝑍}) |
6 | 5 | fveq2d 6740 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = (♯‘{𝑍})) |
7 | hashsng 13961 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → (♯‘{𝑍}) = 1) | |
8 | 6, 7 | eqtrd 2778 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (♯‘(Base‘𝑀)) = 1) |
9 | 2 | ring1 19645 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |
10 | 0ringnnzr 20332 | . . . 4 ⊢ (𝑀 ∈ Ring → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ((♯‘(Base‘𝑀)) = 1 ↔ ¬ 𝑀 ∈ NzRing)) |
12 | 8, 11 | mpbid 235 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
13 | df-nel 3048 | . 2 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
14 | 12, 13 | sylibr 237 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2111 ∉ wnel 3047 Vcvv 3421 {csn 4556 {ctp 4560 〈cop 4562 ‘cfv 6398 1c1 10755 ♯chash 13921 ndxcnx 16769 Basecbs 16785 +gcplusg 16827 .rcmulr 16828 Ringcrg 19587 NzRingcnzr 20320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-oadd 8227 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-dju 9542 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-n0 12116 df-xnn0 12188 df-z 12202 df-uz 12464 df-fz 13121 df-hash 13922 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-plusg 16840 df-mulr 16841 df-0g 16971 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-grp 18393 df-minusg 18394 df-mgp 19530 df-ur 19542 df-ring 19589 df-nzr 20321 |
This theorem is referenced by: rng1nfld 20341 lmod1zrnlvec 45537 |
Copyright terms: Public domain | W3C validator |