![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrrest2 | Structured version Visualization version GIF version |
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
xrrest2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
xrrest2.2 | ⊢ 𝑋 = (ordTop‘ ≤ ) |
Ref | Expression |
---|---|
xrrest2 | ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrrest2.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | eqid 2726 | . . 3 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
3 | 1, 2 | rerest 24808 | . 2 ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
4 | xrrest2.2 | . . 3 ⊢ 𝑋 = (ordTop‘ ≤ ) | |
5 | 4, 2 | xrrest 24811 | . 2 ⊢ (𝐴 ⊆ ℝ → (𝑋 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
6 | 3, 5 | eqtr4d 2769 | 1 ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊆ wss 3946 ran crn 5675 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 ≤ cle 11290 (,)cioo 13372 ↾t crest 17430 TopOpenctopn 17431 topGenctg 17447 ordTopcordt 17509 ℂfldccnfld 21339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fi 9447 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ioc 13377 df-ico 13378 df-icc 13379 df-fz 13533 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-struct 17144 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-mulr 17275 df-starv 17276 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-rest 17432 df-topn 17433 df-topgen 17453 df-ordt 17511 df-ps 18586 df-tsr 18587 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-xms 24314 df-ms 24315 |
This theorem is referenced by: icopnfhmeo 24956 xrhmeo 24959 lmlimxrge0 33776 |
Copyright terms: Public domain | W3C validator |