Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem4 Structured version   Visualization version   GIF version

Theorem 3cubeslem4 40511
Description: Lemma for 3cubes 40512. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem4 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))

Proof of Theorem 3cubeslem4
StepHypRef Expression
1 3re 12053 . . . . . . . . . . . . 13 3 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℝ)
3 3nn0 12251 . . . . . . . . . . . . 13 3 ∈ ℕ0
43a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℕ0)
52, 4reexpcld 13881 . . . . . . . . . . 11 (⊤ → (3↑3) ∈ ℝ)
65mptru 1546 . . . . . . . . . 10 (3↑3) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℝ)
8 3cubeslem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℚ)
9 qre 12693 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
103a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 3 ∈ ℕ0)
119, 10reexpcld 13881 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℝ)
128, 11syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℝ)
137, 12remulcld 11005 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑3)) ∈ ℝ)
14 1red 10976 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11403 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℝ)
1615recnd 11003 . . . . . 6 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℂ)
173a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
1816, 17expcld 13864 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑3)) − 1)↑3) ∈ ℂ)
1913renegcld 11402 . . . . . . . . 9 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℝ)
2019recnd 11003 . . . . . . . 8 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℂ)
211a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℝ)
2221recnd 11003 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
2322sqcld 13862 . . . . . . . . 9 (𝜑 → (3↑2) ∈ ℂ)
24 qcn 12703 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
258, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2623, 25mulcld 10995 . . . . . . . 8 (𝜑 → ((3↑2) · 𝐴) ∈ ℂ)
2720, 26addcld 10994 . . . . . . 7 (𝜑 → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℂ)
28 1cnd 10970 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2927, 28addcld 10994 . . . . . 6 (𝜑 → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℂ)
3029, 17expcld 13864 . . . . 5 (𝜑 → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) ∈ ℂ)
317recnd 11003 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℂ)
3225sqcld 13862 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
3331, 32mulcld 10995 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑2)) ∈ ℂ)
3433, 26addcld 10994 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℂ)
3534, 22addcld 10994 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℂ)
3635, 17expcld 13864 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ∈ ℂ)
3783cubeslem2 40507 . . . . . . 7 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3837neqned 2950 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
39 3z 12353 . . . . . . 7 3 ∈ ℤ
4039a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
4135, 38, 40expne0d 13870 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ≠ 0)
4218, 30, 36, 41divdird 11789 . . . 4 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4342oveq1d 7290 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4418, 30addcld 10994 . . . 4 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) ∈ ℂ)
4534, 17expcld 13864 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) ∈ ℂ)
4644, 45, 36, 41divdird 11789 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4716, 35, 38, 17expdivd 13878 . . . . . 6 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
4847oveq1d 7290 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
4948oveq1d 7290 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5029, 35, 38, 17expdivd 13878 . . . . . 6 (𝜑 → ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5150oveq2d 7291 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5251oveq1d 7290 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5334, 35, 38, 17expdivd 13878 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5453oveq2d 7291 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5549, 52, 543eqtrd 2782 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5643, 46, 553eqtr4rd 2789 . 2 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5783cubeslem3 40510 . . 3 (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
5857oveq1d 7290 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5925, 36, 41divcan4d 11757 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = 𝐴)
6056, 58, 593eqtr2rd 2785 1 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wtru 1540  wcel 2106  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  3c3 12029  0cn0 12233  cz 12319  cq 12688  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-seq 13722  df-exp 13783  df-dvds 15964
This theorem is referenced by:  3cubes  40512
  Copyright terms: Public domain W3C validator