Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem4 Structured version   Visualization version   GIF version

Theorem 3cubeslem4 42677
Description: Lemma for 3cubes 42678. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem4 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))

Proof of Theorem 3cubeslem4
StepHypRef Expression
1 3re 12344 . . . . . . . . . . . . 13 3 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℝ)
3 3nn0 12542 . . . . . . . . . . . . 13 3 ∈ ℕ0
43a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℕ0)
52, 4reexpcld 14200 . . . . . . . . . . 11 (⊤ → (3↑3) ∈ ℝ)
65mptru 1544 . . . . . . . . . 10 (3↑3) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℝ)
8 3cubeslem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℚ)
9 qre 12993 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
103a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 3 ∈ ℕ0)
119, 10reexpcld 14200 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℝ)
128, 11syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℝ)
137, 12remulcld 11289 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑3)) ∈ ℝ)
14 1red 11260 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11689 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℝ)
1615recnd 11287 . . . . . 6 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℂ)
173a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
1816, 17expcld 14183 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑3)) − 1)↑3) ∈ ℂ)
1913renegcld 11688 . . . . . . . . 9 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℝ)
2019recnd 11287 . . . . . . . 8 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℂ)
211a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℝ)
2221recnd 11287 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
2322sqcld 14181 . . . . . . . . 9 (𝜑 → (3↑2) ∈ ℂ)
24 qcn 13003 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
258, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2623, 25mulcld 11279 . . . . . . . 8 (𝜑 → ((3↑2) · 𝐴) ∈ ℂ)
2720, 26addcld 11278 . . . . . . 7 (𝜑 → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℂ)
28 1cnd 11254 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2927, 28addcld 11278 . . . . . 6 (𝜑 → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℂ)
3029, 17expcld 14183 . . . . 5 (𝜑 → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) ∈ ℂ)
317recnd 11287 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℂ)
3225sqcld 14181 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
3331, 32mulcld 11279 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑2)) ∈ ℂ)
3433, 26addcld 11278 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℂ)
3534, 22addcld 11278 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℂ)
3635, 17expcld 14183 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ∈ ℂ)
3783cubeslem2 42673 . . . . . . 7 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3837neqned 2945 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
39 3z 12648 . . . . . . 7 3 ∈ ℤ
4039a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
4135, 38, 40expne0d 14189 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ≠ 0)
4218, 30, 36, 41divdird 12079 . . . 4 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4342oveq1d 7446 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4418, 30addcld 11278 . . . 4 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) ∈ ℂ)
4534, 17expcld 14183 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) ∈ ℂ)
4644, 45, 36, 41divdird 12079 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4716, 35, 38, 17expdivd 14197 . . . . . 6 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
4847oveq1d 7446 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
4948oveq1d 7446 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5029, 35, 38, 17expdivd 14197 . . . . . 6 (𝜑 → ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5150oveq2d 7447 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5251oveq1d 7446 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5334, 35, 38, 17expdivd 14197 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5453oveq2d 7447 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5549, 52, 543eqtrd 2779 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5643, 46, 553eqtr4rd 2786 . 2 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5783cubeslem3 42676 . . 3 (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
5857oveq1d 7446 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5925, 36, 41divcan4d 12047 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = 𝐴)
6056, 58, 593eqtr2rd 2782 1 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wtru 1538  wcel 2106  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  3c3 12320  0cn0 12524  cz 12611  cq 12988  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-seq 14040  df-exp 14100  df-dvds 16288
This theorem is referenced by:  3cubes  42678
  Copyright terms: Public domain W3C validator