Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem4 Structured version   Visualization version   GIF version

Theorem 3cubeslem4 40427
Description: Lemma for 3cubes 40428. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem4 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))

Proof of Theorem 3cubeslem4
StepHypRef Expression
1 3re 11983 . . . . . . . . . . . . 13 3 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℝ)
3 3nn0 12181 . . . . . . . . . . . . 13 3 ∈ ℕ0
43a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℕ0)
52, 4reexpcld 13809 . . . . . . . . . . 11 (⊤ → (3↑3) ∈ ℝ)
65mptru 1546 . . . . . . . . . 10 (3↑3) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℝ)
8 3cubeslem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℚ)
9 qre 12622 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
103a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 3 ∈ ℕ0)
119, 10reexpcld 13809 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℝ)
128, 11syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℝ)
137, 12remulcld 10936 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑3)) ∈ ℝ)
14 1red 10907 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11333 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℝ)
1615recnd 10934 . . . . . 6 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℂ)
173a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
1816, 17expcld 13792 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑3)) − 1)↑3) ∈ ℂ)
1913renegcld 11332 . . . . . . . . 9 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℝ)
2019recnd 10934 . . . . . . . 8 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℂ)
211a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℝ)
2221recnd 10934 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
2322sqcld 13790 . . . . . . . . 9 (𝜑 → (3↑2) ∈ ℂ)
24 qcn 12632 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
258, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2623, 25mulcld 10926 . . . . . . . 8 (𝜑 → ((3↑2) · 𝐴) ∈ ℂ)
2720, 26addcld 10925 . . . . . . 7 (𝜑 → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℂ)
28 1cnd 10901 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2927, 28addcld 10925 . . . . . 6 (𝜑 → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℂ)
3029, 17expcld 13792 . . . . 5 (𝜑 → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) ∈ ℂ)
317recnd 10934 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℂ)
3225sqcld 13790 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
3331, 32mulcld 10926 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑2)) ∈ ℂ)
3433, 26addcld 10925 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℂ)
3534, 22addcld 10925 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℂ)
3635, 17expcld 13792 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ∈ ℂ)
3783cubeslem2 40423 . . . . . . 7 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3837neqned 2949 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
39 3z 12283 . . . . . . 7 3 ∈ ℤ
4039a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
4135, 38, 40expne0d 13798 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ≠ 0)
4218, 30, 36, 41divdird 11719 . . . 4 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4342oveq1d 7270 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4418, 30addcld 10925 . . . 4 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) ∈ ℂ)
4534, 17expcld 13792 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) ∈ ℂ)
4644, 45, 36, 41divdird 11719 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4716, 35, 38, 17expdivd 13806 . . . . . 6 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
4847oveq1d 7270 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
4948oveq1d 7270 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5029, 35, 38, 17expdivd 13806 . . . . . 6 (𝜑 → ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5150oveq2d 7271 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5251oveq1d 7270 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5334, 35, 38, 17expdivd 13806 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5453oveq2d 7271 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5549, 52, 543eqtrd 2782 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5643, 46, 553eqtr4rd 2789 . 2 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5783cubeslem3 40426 . . 3 (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
5857oveq1d 7270 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5925, 36, 41divcan4d 11687 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = 𝐴)
6056, 58, 593eqtr2rd 2785 1 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wtru 1540  wcel 2108  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  3c3 11959  0cn0 12163  cz 12249  cq 12617  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-seq 13650  df-exp 13711  df-dvds 15892
This theorem is referenced by:  3cubes  40428
  Copyright terms: Public domain W3C validator