Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem4 Structured version   Visualization version   GIF version

Theorem 3cubeslem4 42665
Description: Lemma for 3cubes 42666. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem4 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))

Proof of Theorem 3cubeslem4
StepHypRef Expression
1 3re 12226 . . . . . . . . . . . . 13 3 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℝ)
3 3nn0 12420 . . . . . . . . . . . . 13 3 ∈ ℕ0
43a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℕ0)
52, 4reexpcld 14088 . . . . . . . . . . 11 (⊤ → (3↑3) ∈ ℝ)
65mptru 1547 . . . . . . . . . 10 (3↑3) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℝ)
8 3cubeslem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℚ)
9 qre 12872 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
103a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 3 ∈ ℕ0)
119, 10reexpcld 14088 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℝ)
128, 11syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℝ)
137, 12remulcld 11164 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑3)) ∈ ℝ)
14 1red 11135 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11566 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℝ)
1615recnd 11162 . . . . . 6 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℂ)
173a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
1816, 17expcld 14071 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑3)) − 1)↑3) ∈ ℂ)
1913renegcld 11565 . . . . . . . . 9 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℝ)
2019recnd 11162 . . . . . . . 8 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℂ)
211a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℝ)
2221recnd 11162 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
2322sqcld 14069 . . . . . . . . 9 (𝜑 → (3↑2) ∈ ℂ)
24 qcn 12882 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
258, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2623, 25mulcld 11154 . . . . . . . 8 (𝜑 → ((3↑2) · 𝐴) ∈ ℂ)
2720, 26addcld 11153 . . . . . . 7 (𝜑 → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℂ)
28 1cnd 11129 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2927, 28addcld 11153 . . . . . 6 (𝜑 → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℂ)
3029, 17expcld 14071 . . . . 5 (𝜑 → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) ∈ ℂ)
317recnd 11162 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℂ)
3225sqcld 14069 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
3331, 32mulcld 11154 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑2)) ∈ ℂ)
3433, 26addcld 11153 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℂ)
3534, 22addcld 11153 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℂ)
3635, 17expcld 14071 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ∈ ℂ)
3783cubeslem2 42661 . . . . . . 7 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3837neqned 2932 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
39 3z 12526 . . . . . . 7 3 ∈ ℤ
4039a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
4135, 38, 40expne0d 14077 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ≠ 0)
4218, 30, 36, 41divdird 11956 . . . 4 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4342oveq1d 7368 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4418, 30addcld 11153 . . . 4 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) ∈ ℂ)
4534, 17expcld 14071 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) ∈ ℂ)
4644, 45, 36, 41divdird 11956 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4716, 35, 38, 17expdivd 14085 . . . . . 6 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
4847oveq1d 7368 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
4948oveq1d 7368 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5029, 35, 38, 17expdivd 14085 . . . . . 6 (𝜑 → ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5150oveq2d 7369 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5251oveq1d 7368 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5334, 35, 38, 17expdivd 14085 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5453oveq2d 7369 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5549, 52, 543eqtrd 2768 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5643, 46, 553eqtr4rd 2775 . 2 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5783cubeslem3 42664 . . 3 (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
5857oveq1d 7368 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5925, 36, 41divcan4d 11924 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = 𝐴)
6056, 58, 593eqtr2rd 2771 1 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cq 12867  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-seq 13927  df-exp 13987  df-dvds 16182
This theorem is referenced by:  3cubes  42666
  Copyright terms: Public domain W3C validator