![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubggenodd | Structured version Visualization version GIF version |
Description: Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
cycsubggenodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
cycsubggenodd.2 | ⊢ · = (.g‘𝐺) |
cycsubggenodd.3 | ⊢ 𝑂 = (od‘𝐺) |
cycsubggenodd.4 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
cycsubggenodd.5 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
cycsubggenodd.6 | ⊢ (𝜑 → 𝐶 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) |
Ref | Expression |
---|---|
cycsubggenodd | ⊢ (𝜑 → (𝑂‘𝐴) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubggenodd.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | cycsubggenodd.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | cycsubggenodd.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
4 | cycsubggenodd.3 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
5 | cycsubggenodd.2 | . . . 4 ⊢ · = (.g‘𝐺) | |
6 | eqid 2726 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) | |
7 | 3, 4, 5, 6 | dfod2 19562 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝑂‘𝐴) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))), 0)) |
8 | 1, 2, 7 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑂‘𝐴) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))), 0)) |
9 | cycsubggenodd.6 | . . . . 5 ⊢ (𝜑 → 𝐶 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) | |
10 | 9 | eqcomd 2732 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) = 𝐶) |
11 | 10 | eleq1d 2811 | . . 3 ⊢ (𝜑 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) ∈ Fin ↔ 𝐶 ∈ Fin)) |
12 | 10 | fveq2d 6905 | . . 3 ⊢ (𝜑 → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) = (♯‘𝐶)) |
13 | 11, 12 | ifbieq1d 4557 | . 2 ⊢ (𝜑 → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
14 | 8, 13 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑂‘𝐴) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ifcif 4533 ↦ cmpt 5236 ran crn 5683 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 0cc0 11158 ℤcz 12610 ♯chash 14347 Basecbs 17213 Grpcgrp 18928 .gcmg 19061 odcod 19522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-omul 8501 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-acn 9985 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-dvds 16257 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-od 19526 |
This theorem is referenced by: ablsimpgfind 20110 fincygsubgodd 20112 |
Copyright terms: Public domain | W3C validator |