Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx0 48040
Description: In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx0
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx0 48038 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
65fveq2d 6844 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
7 0ne1 12233 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 0 ≠ 1)
98orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
10 c0ex 11144 . . . . . 6 0 ∈ V
11 ovex 7402 . . . . . 6 (((2nd𝑋) + 1) mod 𝑁) ∈ V
1210, 11opthne 5437 . . . . 5 (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ↔ (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩)
14 ax-1ne0 11113 . . . . . . 7 1 ≠ 0
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ≠ 0)
1615orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
17 1ex 11146 . . . . . 6 1 ∈ V
18 fvex 6853 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5437 . . . . 5 (⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
21 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
2221anim2i 617 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
23 eqid 2729 . . . . . . . . . . . . . . . 16 (0..^𝑁) = (0..^𝑁)
2423, 1, 2, 3gpgvtxel2 48012 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
25 elfzoelz 13596 . . . . . . . . . . . . . . 15 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℤ)
2726zcnd 12615 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℂ)
28 1cnd 11145 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℂ)
29 2cnd 12240 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℂ)
3027, 28, 29subadd23d 11531 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + (2 − 1)))
31 2m1e1 12283 . . . . . . . . . . . . . 14 (2 − 1) = 1
3231a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2 − 1) = 1)
3332oveq2d 7385 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + (2 − 1)) = ((2nd𝑋) + 1))
3430, 33eqtrd 2764 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + 1))
3534eqcomd 2735 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + 1) = (((2nd𝑋) − 1) + 2))
3635oveq1d 7384 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
37 1zzd 12540 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℤ)
3826, 37zsubcld 12619 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℤ)
3938zred 12614 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℝ)
40 2re 12236 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℝ)
42 eluz3nn 12824 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
4342nnrpd 12969 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ+)
4443ad2antrr 726 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℝ+)
45 modaddabs 13849 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4639, 41, 44, 45syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4746eqcomd 2735 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) + 2) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4836, 47eqtrd 2764 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4942ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℕ)
5038, 49zmodcld 13830 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0)
51 modlt 13818 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5239, 44, 51syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5350, 52jca 511 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁))
54 2nn0 12435 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℕ0)
56 eluz2 12775 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
5740a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ∈ ℝ)
58 3re 12242 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ∈ ℝ)
60 zre 12509 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
62 2lt3 12329 . . . . . . . . . . . . . . . . . 18 2 < 3
6362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 3)
64 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ≤ 𝑁)
6557, 59, 61, 63, 64ltletrd 11310 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
66653adant1 1130 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
6756, 66sylbi 217 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
68 elfzo0 13637 . . . . . . . . . . . . . 14 (2 ∈ (0..^𝑁) ↔ (2 ∈ ℕ0𝑁 ∈ ℕ ∧ 2 < 𝑁))
6955, 42, 67, 68syl3anbrc 1344 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 2 ∈ (0..^𝑁))
70 zmodidfzoimp 13839 . . . . . . . . . . . . 13 (2 ∈ (0..^𝑁) → (2 mod 𝑁) = 2)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) = 2)
72 2nn 12235 . . . . . . . . . . . 12 2 ∈ ℕ
7371, 72eqeltrdi 2836 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) ∈ ℕ)
7440a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ)
75 modlt 13818 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (2 mod 𝑁) < 𝑁)
7674, 43, 75syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) < 𝑁)
7773, 76jca 511 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
7877ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
79 addmodne 47318 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁) ∧ ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8049, 53, 78, 79syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8148, 80eqnetrd 2992 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8281necomd 2980 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
8382olcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
84 ovex 7402 . . . . . 6 (((2nd𝑋) − 1) mod 𝑁) ∈ V
8510, 84opthne 5437 . . . . 5 (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ↔ (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
8683, 85sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
8713, 20, 863jca 1128 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
88 opex 5419 . . . 4 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
89 opex 5419 . . . 4 ⟨1, (2nd𝑋)⟩ ∈ V
90 opex 5419 . . . 4 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
91 hashtpg 14426 . . . 4 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V ∧ ⟨1, (2nd𝑋)⟩ ∈ V ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V) → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3))
9288, 89, 90, 91mp3an 1463 . . 3 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
9387, 92sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
946, 93eqtrd 2764 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  {ctp 4589  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ..^cfzo 13591  cceil 13729   mod cmo 13807  chash 14271  Vtxcvtx 28899   NeighbVtx cnbgr 29235   gPetersenGr cgpg 48004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-hash 14272  df-dvds 16199  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28892  df-vtx 28901  df-iedg 28902  df-edg 28951  df-upgr 28985  df-umgr 28986  df-usgr 29054  df-nbgr 29236  df-gpg 48005
This theorem is referenced by:  gpgcubic  48043  gpg5nbgrvtx03star  48044
  Copyright terms: Public domain W3C validator