Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx0 48005
Description: In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx0
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx0 48003 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
65fveq2d 6908 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
7 0ne1 12333 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 0 ≠ 1)
98orcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
10 c0ex 11251 . . . . . 6 0 ∈ V
11 ovex 7462 . . . . . 6 (((2nd𝑋) + 1) mod 𝑁) ∈ V
1210, 11opthne 5485 . . . . 5 (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ↔ (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩)
14 ax-1ne0 11220 . . . . . . 7 1 ≠ 0
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ≠ 0)
1615orcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
17 1ex 11253 . . . . . 6 1 ∈ V
18 fvex 6917 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5485 . . . . 5 (⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
21 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
2221anim2i 617 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
23 eqid 2736 . . . . . . . . . . . . . . . 16 (0..^𝑁) = (0..^𝑁)
2423, 1, 2, 3gpgvtxel2 47979 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
25 elfzoelz 13695 . . . . . . . . . . . . . . 15 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℤ)
2726zcnd 12719 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℂ)
28 1cnd 11252 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℂ)
29 2cnd 12340 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℂ)
3027, 28, 29subadd23d 11638 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + (2 − 1)))
31 2m1e1 12388 . . . . . . . . . . . . . 14 (2 − 1) = 1
3231a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2 − 1) = 1)
3332oveq2d 7445 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + (2 − 1)) = ((2nd𝑋) + 1))
3430, 33eqtrd 2776 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + 1))
3534eqcomd 2742 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + 1) = (((2nd𝑋) − 1) + 2))
3635oveq1d 7444 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
37 1zzd 12644 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℤ)
3826, 37zsubcld 12723 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℤ)
3938zred 12718 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℝ)
40 2re 12336 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℝ)
42 eluzge3nn 12928 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
4342nnrpd 13071 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ+)
4443ad2antrr 726 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℝ+)
45 modaddabs 13945 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4639, 41, 44, 45syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4746eqcomd 2742 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) + 2) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4836, 47eqtrd 2776 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4942ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℕ)
5038, 49zmodcld 13928 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0)
51 modlt 13916 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5239, 44, 51syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5350, 52jca 511 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁))
54 2nn0 12539 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℕ0)
56 eluz2 12880 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
5740a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ∈ ℝ)
58 3re 12342 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ∈ ℝ)
60 zre 12613 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
62 2lt3 12434 . . . . . . . . . . . . . . . . . 18 2 < 3
6362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 3)
64 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ≤ 𝑁)
6557, 59, 61, 63, 64ltletrd 11417 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
66653adant1 1131 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
6756, 66sylbi 217 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
68 elfzo0 13736 . . . . . . . . . . . . . 14 (2 ∈ (0..^𝑁) ↔ (2 ∈ ℕ0𝑁 ∈ ℕ ∧ 2 < 𝑁))
6955, 42, 67, 68syl3anbrc 1344 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 2 ∈ (0..^𝑁))
70 zmodidfzoimp 13937 . . . . . . . . . . . . 13 (2 ∈ (0..^𝑁) → (2 mod 𝑁) = 2)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) = 2)
72 2nn 12335 . . . . . . . . . . . 12 2 ∈ ℕ
7371, 72eqeltrdi 2848 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) ∈ ℕ)
7440a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ)
75 modlt 13916 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (2 mod 𝑁) < 𝑁)
7674, 43, 75syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) < 𝑁)
7773, 76jca 511 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
7877ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
79 addmodne 47319 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁) ∧ ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8049, 53, 78, 79syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8148, 80eqnetrd 3007 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8281necomd 2995 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
8382olcd 875 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
84 ovex 7462 . . . . . 6 (((2nd𝑋) − 1) mod 𝑁) ∈ V
8510, 84opthne 5485 . . . . 5 (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ↔ (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
8683, 85sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
8713, 20, 863jca 1129 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
88 opex 5467 . . . 4 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
89 opex 5467 . . . 4 ⟨1, (2nd𝑋)⟩ ∈ V
90 opex 5467 . . . 4 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
91 hashtpg 14520 . . . 4 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V ∧ ⟨1, (2nd𝑋)⟩ ∈ V ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V) → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3))
9288, 89, 90, 91mp3an 1463 . . 3 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
9387, 92sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
946, 93eqtrd 2776 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2939  Vcvv 3479  {ctp 4628  cop 4630   class class class wbr 5141  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  cr 11150  0cc0 11151  1c1 11152   + caddc 11154   < clt 11291  cle 11292  cmin 11488   / cdiv 11916  cn 12262  2c2 12317  3c3 12318  0cn0 12522  cz 12609  cuz 12874  +crp 13030  ..^cfzo 13690  cceil 13827   mod cmo 13905  chash 14365  Vtxcvtx 29003   NeighbVtx cnbgr 29339   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-oadd 8506  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-sup 9478  df-inf 9479  df-dju 9937  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-rp 13031  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-mod 13906  df-hash 14366  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-edgf 28994  df-vtx 29005  df-iedg 29006  df-edg 29055  df-upgr 29089  df-umgr 29090  df-usgr 29158  df-nbgr 29340  df-gpg 47973
This theorem is referenced by:  gpgcubic  48008  gpg5nbgrvtx03star  48009
  Copyright terms: Public domain W3C validator