Proof of Theorem gpg3nbgrvtx0
| Step | Hyp | Ref
| Expression |
| 1 | | gpgnbgr.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 2 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 3 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 4 | | gpgnbgr.u |
. . . 4
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| 5 | 1, 2, 3, 4 | gpgnbgrvtx0 48003 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 6 | 5 | fveq2d 6890 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉})) |
| 7 | | 0ne1 12319 |
. . . . . . 7
⊢ 0 ≠
1 |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 0 ≠
1) |
| 9 | 8 | orcd 873 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
| 10 | | c0ex 11237 |
. . . . . 6
⊢ 0 ∈
V |
| 11 | | ovex 7446 |
. . . . . 6
⊢
(((2nd ‘𝑋) + 1) mod 𝑁) ∈ V |
| 12 | 10, 11 | opthne 5467 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ↔ (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
| 13 | 9, 12 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉) |
| 14 | | ax-1ne0 11206 |
. . . . . . 7
⊢ 1 ≠
0 |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ≠
0) |
| 16 | 15 | orcd 873 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (1 ≠ 0 ∨
(2nd ‘𝑋)
≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
| 17 | | 1ex 11239 |
. . . . . 6
⊢ 1 ∈
V |
| 18 | | fvex 6899 |
. . . . . 6
⊢
(2nd ‘𝑋) ∈ V |
| 19 | 17, 18 | opthne 5467 |
. . . . 5
⊢ (〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ↔ (1 ≠ 0
∨ (2nd ‘𝑋) ≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
| 20 | 16, 19 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉) |
| 21 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0) → 𝑋 ∈ 𝑉) |
| 22 | 21 | anim2i 617 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉)) |
| 23 | | eqid 2734 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) = (0..^𝑁) |
| 24 | 23, 1, 2, 3 | gpgvtxel2 47979 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
| 25 | | elfzoelz 13681 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑋) ∈ (0..^𝑁) → (2nd ‘𝑋) ∈
ℤ) |
| 26 | 22, 24, 25 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈
ℤ) |
| 27 | 26 | zcnd 12706 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈
ℂ) |
| 28 | | 1cnd 11238 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ∈
ℂ) |
| 29 | | 2cnd 12326 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 2 ∈
ℂ) |
| 30 | 27, 28, 29 | subadd23d 11624 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) + 2) =
((2nd ‘𝑋)
+ (2 − 1))) |
| 31 | | 2m1e1 12374 |
. . . . . . . . . . . . . 14
⊢ (2
− 1) = 1 |
| 32 | 31 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2 − 1) =
1) |
| 33 | 32 | oveq2d 7429 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((2nd
‘𝑋) + (2 − 1))
= ((2nd ‘𝑋) + 1)) |
| 34 | 30, 33 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) + 2) =
((2nd ‘𝑋)
+ 1)) |
| 35 | 34 | eqcomd 2740 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((2nd
‘𝑋) + 1) =
(((2nd ‘𝑋)
− 1) + 2)) |
| 36 | 35 | oveq1d 7428 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) + 1) mod 𝑁) = ((((2nd
‘𝑋) − 1) + 2)
mod 𝑁)) |
| 37 | | 1zzd 12631 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ∈
ℤ) |
| 38 | 26, 37 | zsubcld 12710 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((2nd
‘𝑋) − 1) ∈
ℤ) |
| 39 | 38 | zred 12705 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((2nd
‘𝑋) − 1) ∈
ℝ) |
| 40 | | 2re 12322 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 41 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 2 ∈
ℝ) |
| 42 | | eluzge3nn 12914 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 43 | 42 | nnrpd 13057 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈
ℝ+) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈
ℝ+) |
| 45 | | modaddabs 13931 |
. . . . . . . . . . 11
⊢
((((2nd ‘𝑋) − 1) ∈ ℝ ∧ 2 ∈
ℝ ∧ 𝑁 ∈
ℝ+) → (((((2nd ‘𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd ‘𝑋) − 1) + 2) mod 𝑁)) |
| 46 | 39, 41, 44, 45 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(((((2nd ‘𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd ‘𝑋) − 1) + 2) mod 𝑁)) |
| 47 | 46 | eqcomd 2740 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((((2nd ‘𝑋) − 1) + 2) mod 𝑁) = (((((2nd ‘𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁)) |
| 48 | 36, 47 | eqtrd 2769 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) + 1) mod 𝑁) = (((((2nd
‘𝑋) − 1) mod
𝑁) + (2 mod 𝑁)) mod 𝑁)) |
| 49 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈ ℕ) |
| 50 | 38, 49 | zmodcld 13914 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) mod
𝑁) ∈
ℕ0) |
| 51 | | modlt 13902 |
. . . . . . . . . . 11
⊢
((((2nd ‘𝑋) − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ (((2nd ‘𝑋) − 1) mod 𝑁) < 𝑁) |
| 52 | 39, 44, 51 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) mod
𝑁) < 𝑁) |
| 53 | 50, 52 | jca 511 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((((2nd ‘𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧
(((2nd ‘𝑋)
− 1) mod 𝑁) <
𝑁)) |
| 54 | | 2nn0 12526 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ0 |
| 55 | 54 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈
ℕ0) |
| 56 | | eluz2 12866 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤
𝑁)) |
| 57 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 2 ∈
ℝ) |
| 58 | | 3re 12328 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ∈
ℝ |
| 59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 3 ∈
ℝ) |
| 60 | | zre 12600 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 𝑁 ∈ ℝ) |
| 62 | | 2lt3 12420 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 <
3 |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 2 <
3) |
| 64 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 3 ≤ 𝑁) |
| 65 | 57, 59, 61, 63, 64 | ltletrd 11403 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 2 < 𝑁) |
| 66 | 65 | 3adant1 1130 |
. . . . . . . . . . . . . . 15
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁) |
| 67 | 56, 66 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 < 𝑁) |
| 68 | | elfzo0 13722 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(0..^𝑁) ↔ (2 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 2 < 𝑁)) |
| 69 | 55, 42, 67, 68 | syl3anbrc 1343 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈ (0..^𝑁)) |
| 70 | | zmodidfzoimp 13923 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(0..^𝑁) → (2 mod 𝑁) = 2) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → (2 mod 𝑁) = 2) |
| 72 | | 2nn 12321 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 73 | 71, 72 | eqeltrdi 2841 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (2 mod 𝑁) ∈ ℕ) |
| 74 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈ ℝ) |
| 75 | | modlt 13902 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ+) → (2 mod 𝑁) < 𝑁) |
| 76 | 74, 43, 75 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (2 mod 𝑁) < 𝑁) |
| 77 | 73, 76 | jca 511 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁)) |
| 78 | 77 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod
𝑁) < 𝑁)) |
| 79 | | addmodne 47319 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧
((((2nd ‘𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧
(((2nd ‘𝑋)
− 1) mod 𝑁) <
𝑁) ∧ ((2 mod 𝑁) ∈ ℕ ∧ (2 mod
𝑁) < 𝑁)) → (((((2nd ‘𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd ‘𝑋) − 1) mod 𝑁)) |
| 80 | 49, 53, 78, 79 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(((((2nd ‘𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd ‘𝑋) − 1) mod 𝑁)) |
| 81 | 48, 80 | eqnetrd 2998 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) + 1) mod 𝑁) ≠ (((2nd
‘𝑋) − 1) mod
𝑁)) |
| 82 | 81 | necomd 2986 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) mod
𝑁) ≠ (((2nd
‘𝑋) + 1) mod 𝑁)) |
| 83 | 82 | olcd 874 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
| 84 | | ovex 7446 |
. . . . . 6
⊢
(((2nd ‘𝑋) − 1) mod 𝑁) ∈ V |
| 85 | 10, 84 | opthne 5467 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ↔ (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
| 86 | 83, 85 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) |
| 87 | 13, 20, 86 | 3jca 1128 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ∧ 〈1, (2nd
‘𝑋)〉 ≠
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ≠ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉)) |
| 88 | | opex 5449 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
V |
| 89 | | opex 5449 |
. . . 4
⊢ 〈1,
(2nd ‘𝑋)〉 ∈ V |
| 90 | | opex 5449 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V |
| 91 | | hashtpg 14507 |
. . . 4
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ V ∧ 〈1,
(2nd ‘𝑋)〉 ∈ V ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V) → ((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3)) |
| 92 | 88, 89, 90, 91 | mp3an 1462 |
. . 3
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3) |
| 93 | 87, 92 | sylib 218 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) =
3) |
| 94 | 6, 93 | eqtrd 2769 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
3) |