Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx0 47919
Description: In a generalized Petersen graph 𝐺, every vertex of the first kind has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx0
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx0 47917 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
65fveq2d 6927 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
7 0ne1 12369 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 0 ≠ 1)
98orcd 872 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
10 c0ex 11287 . . . . . 6 0 ∈ V
11 ovex 7484 . . . . . 6 (((2nd𝑋) + 1) mod 𝑁) ∈ V
1210, 11opthne 5503 . . . . 5 (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ↔ (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩)
14 ax-1ne0 11256 . . . . . . 7 1 ≠ 0
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ≠ 0)
1615orcd 872 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
17 1ex 11289 . . . . . 6 1 ∈ V
18 fvex 6936 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5503 . . . . 5 (⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
21 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
2221anim2i 616 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
23 eqid 2740 . . . . . . . . . . . . . . . 16 (0..^𝑁) = (0..^𝑁)
2423, 1, 2, 3gpgvtxel2 47896 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
25 elfzoelz 13727 . . . . . . . . . . . . . . 15 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℤ)
2726zcnd 12755 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℂ)
28 1cnd 11288 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℂ)
29 2cnd 12376 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℂ)
3027, 28, 29subadd23d 11674 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + (2 − 1)))
31 2m1e1 12424 . . . . . . . . . . . . . 14 (2 − 1) = 1
3231a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2 − 1) = 1)
3332oveq2d 7467 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + (2 − 1)) = ((2nd𝑋) + 1))
3430, 33eqtrd 2780 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) + 2) = ((2nd𝑋) + 1))
3534eqcomd 2746 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) + 1) = (((2nd𝑋) − 1) + 2))
3635oveq1d 7466 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
37 1zzd 12680 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ ℤ)
3826, 37zsubcld 12759 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℤ)
3938zred 12754 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2nd𝑋) − 1) ∈ ℝ)
40 2re 12372 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 2 ∈ ℝ)
42 eluzge3nn 12964 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
4342nnrpd 13107 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ+)
4443ad2antrr 725 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℝ+)
45 modaddabs 13976 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4639, 41, 44, 45syl3anc 1371 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) = ((((2nd𝑋) − 1) + 2) mod 𝑁))
4746eqcomd 2746 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) + 2) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4836, 47eqtrd 2780 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) = (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁))
4942ad2antrr 725 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ ℕ)
5038, 49zmodcld 13959 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0)
51 modlt 13947 . . . . . . . . . . 11 ((((2nd𝑋) − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5239, 44, 51syl2anc 583 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) < 𝑁)
5350, 52jca 511 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁))
54 2nn0 12575 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℕ0)
56 eluz2 12916 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
5740a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ∈ ℝ)
58 3re 12378 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ∈ ℝ)
60 zre 12649 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
62 2lt3 12470 . . . . . . . . . . . . . . . . . 18 2 < 3
6362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 3)
64 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 3 ≤ 𝑁)
6557, 59, 61, 63, 64ltletrd 11453 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
66653adant1 1130 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
6756, 66sylbi 217 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
68 elfzo0 13768 . . . . . . . . . . . . . 14 (2 ∈ (0..^𝑁) ↔ (2 ∈ ℕ0𝑁 ∈ ℕ ∧ 2 < 𝑁))
6955, 42, 67, 68syl3anbrc 1343 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 2 ∈ (0..^𝑁))
70 zmodidfzoimp 13968 . . . . . . . . . . . . 13 (2 ∈ (0..^𝑁) → (2 mod 𝑁) = 2)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) = 2)
72 2nn 12371 . . . . . . . . . . . 12 2 ∈ ℕ
7371, 72eqeltrdi 2852 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) ∈ ℕ)
7440a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ)
75 modlt 13947 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (2 mod 𝑁) < 𝑁)
7674, 43, 75syl2anc 583 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (2 mod 𝑁) < 𝑁)
7773, 76jca 511 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
7877ad2antrr 725 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁))
79 addmodne 47267 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((((2nd𝑋) − 1) mod 𝑁) ∈ ℕ0 ∧ (((2nd𝑋) − 1) mod 𝑁) < 𝑁) ∧ ((2 mod 𝑁) ∈ ℕ ∧ (2 mod 𝑁) < 𝑁)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8049, 53, 78, 79syl3anc 1371 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((((2nd𝑋) − 1) mod 𝑁) + (2 mod 𝑁)) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8148, 80eqnetrd 3014 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
8281necomd 3002 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
8382olcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
84 ovex 7484 . . . . . 6 (((2nd𝑋) − 1) mod 𝑁) ∈ V
8510, 84opthne 5503 . . . . 5 (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ↔ (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
8683, 85sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
8713, 20, 863jca 1128 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
88 opex 5485 . . . 4 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
89 opex 5485 . . . 4 ⟨1, (2nd𝑋)⟩ ∈ V
90 opex 5485 . . . 4 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
91 hashtpg 14551 . . . 4 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V ∧ ⟨1, (2nd𝑋)⟩ ∈ V ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V) → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3))
9288, 89, 90, 91mp3an 1461 . . 3 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
9387, 92sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
946, 93eqtrd 2780 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  {ctp 4652  cop 4654   class class class wbr 5167  cfv 6576  (class class class)co 7451  1st c1st 8031  2nd c2nd 8032  cr 11186  0cc0 11187  1c1 11188   + caddc 11190   < clt 11327  cle 11328  cmin 11524   / cdiv 11952  cn 12298  2c2 12353  3c3 12354  0cn0 12558  cz 12645  cuz 12910  +crp 13066  ..^cfzo 13722  cceil 13858   mod cmo 13936  chash 14396  Vtxcvtx 29051   NeighbVtx cnbgr 29387   gPetersenGr cgpg 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5304  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4933  df-int 4972  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-1o 8525  df-2o 8526  df-oadd 8529  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-fin 9010  df-sup 9514  df-inf 9515  df-dju 9973  df-card 10011  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-7 12366  df-8 12367  df-9 12368  df-n0 12559  df-xnn0 12632  df-z 12646  df-dec 12766  df-uz 12911  df-rp 13067  df-fz 13579  df-fzo 13723  df-fl 13859  df-ceil 13860  df-mod 13937  df-hash 14397  df-dvds 16320  df-struct 17214  df-slot 17249  df-ndx 17261  df-base 17279  df-edgf 29042  df-vtx 29053  df-iedg 29054  df-edg 29103  df-upgr 29137  df-umgr 29138  df-usgr 29206  df-nbgr 29388  df-gpg 47890
This theorem is referenced by:  gpgcubic  47922  gpg5nbgrvtx03star  47923
  Copyright terms: Public domain W3C validator