MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   GIF version

Theorem cshwidxmodr 14839
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 13737 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nn0z 12636 . . . . . . . . . . 11 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
323ad2ant1 1132 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℤ)
4 zsubcl 12657 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
53, 4sylan 580 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
6 simpl2 1191 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℕ)
75, 6jca 511 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
87ex 412 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
91, 8sylbi 217 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
109impcom 407 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
11103adant1 1129 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
12 zmodfzo 13931 . . . 4 (((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1311, 12syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
14 cshwidxmod 14838 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
1513, 14syld3an3 1408 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
16 elfzoelz 13696 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
1817, 4sylan 580 . . . . . . . . . . . . 13 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
1918zred 12720 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℝ)
20 zre 12615 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
22 nnrp 13044 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2322ad3antlr 731 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℝ+)
24 modaddmod 13947 . . . . . . . . . . . 12 (((𝐼𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
2519, 21, 23, 24syl3anc 1370 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
26 nn0cn 12534 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2726ad2antrr 726 . . . . . . . . . . . . 13 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
28 zcn 12616 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 npcan 11515 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3027, 28, 29syl2an 596 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3130oveq1d 7446 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)) = (𝐼 mod (♯‘𝑊)))
32 zmodidfzoimp 13938 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3332ad2antlr 727 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3425, 31, 333eqtrd 2779 . . . . . . . . . 10 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = 𝐼)
3534fveq2d 6911 . . . . . . . . 9 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
3635ex 412 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
3736ex 412 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
38373adant3 1131 . . . . . 6 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
391, 38sylbi 217 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
4039pm2.43i 52 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
4140impcom 407 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
42413adant1 1129 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
4315, 42eqtrd 2775 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   < clt 11293  cmin 11490  cn 12264  0cn0 12524  cz 12611  +crp 13032  ..^cfzo 13691   mod cmo 13906  chash 14366  Word cword 14549   cyclShift ccsh 14823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-csh 14824
This theorem is referenced by:  cshwrnid  32931
  Copyright terms: Public domain W3C validator