MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   GIF version

Theorem cshwidxmodr 14162
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 13078 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nn0z 11998 . . . . . . . . . . 11 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
323ad2ant1 1130 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℤ)
4 zsubcl 12017 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
53, 4sylan 583 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
6 simpl2 1189 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℕ)
75, 6jca 515 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
87ex 416 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
91, 8sylbi 220 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
109impcom 411 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
11103adant1 1127 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
12 zmodfzo 13262 . . . 4 (((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1311, 12syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
14 cshwidxmod 14161 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
1513, 14syld3an3 1406 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
16 elfzoelz 13038 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
1716adantl 485 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
1817, 4sylan 583 . . . . . . . . . . . . 13 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
1918zred 12080 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℝ)
20 zre 11978 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2120adantl 485 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
22 nnrp 12393 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2322ad3antlr 730 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℝ+)
24 modaddmod 13278 . . . . . . . . . . . 12 (((𝐼𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
2519, 21, 23, 24syl3anc 1368 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
26 nn0cn 11900 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2726ad2antrr 725 . . . . . . . . . . . . 13 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
28 zcn 11979 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 npcan 10887 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3027, 28, 29syl2an 598 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3130oveq1d 7160 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)) = (𝐼 mod (♯‘𝑊)))
32 zmodidfzoimp 13269 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3332ad2antlr 726 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3425, 31, 333eqtrd 2863 . . . . . . . . . 10 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = 𝐼)
3534fveq2d 6662 . . . . . . . . 9 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
3635ex 416 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
3736ex 416 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
38373adant3 1129 . . . . . 6 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
391, 38sylbi 220 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
4039pm2.43i 52 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
4140impcom 411 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
42413adant1 1127 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
4315, 42eqtrd 2859 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5052  cfv 6343  (class class class)co 7145  cc 10527  cr 10528  0cc0 10529   + caddc 10532   < clt 10667  cmin 10862  cn 11630  0cn0 11890  cz 11974  +crp 12382  ..^cfzo 13033   mod cmo 13237  chash 13691  Word cword 13862   cyclShift ccsh 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-fz 12891  df-fzo 13034  df-fl 13162  df-mod 13238  df-hash 13692  df-word 13863  df-concat 13919  df-substr 13999  df-pfx 14029  df-csh 14147
This theorem is referenced by:  cshwrnid  30639
  Copyright terms: Public domain W3C validator