MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   GIF version

Theorem cshwidxmodr 14717
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 13606 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nn0z 12499 . . . . . . . . . . 11 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
323ad2ant1 1133 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℤ)
4 zsubcl 12520 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
53, 4sylan 580 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
6 simpl2 1193 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℕ)
75, 6jca 511 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
87ex 412 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
91, 8sylbi 217 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
109impcom 407 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
11103adant1 1130 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
12 zmodfzo 13804 . . . 4 (((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1311, 12syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
14 cshwidxmod 14716 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
1513, 14syld3an3 1411 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
16 elfzoelz 13565 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
1817, 4sylan 580 . . . . . . . . . . . . 13 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
1918zred 12583 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℝ)
20 zre 12478 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
22 nnrp 12908 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2322ad3antlr 731 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℝ+)
24 modaddmod 13822 . . . . . . . . . . . 12 (((𝐼𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
2519, 21, 23, 24syl3anc 1373 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
26 nn0cn 12397 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2726ad2antrr 726 . . . . . . . . . . . . 13 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
28 zcn 12479 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 npcan 11375 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3027, 28, 29syl2an 596 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3130oveq1d 7367 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)) = (𝐼 mod (♯‘𝑊)))
32 zmodidfzoimp 13811 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3332ad2antlr 727 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3425, 31, 333eqtrd 2770 . . . . . . . . . 10 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = 𝐼)
3534fveq2d 6832 . . . . . . . . 9 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
3635ex 412 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
3736ex 412 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
38373adant3 1132 . . . . . 6 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
391, 38sylbi 217 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
4039pm2.43i 52 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
4140impcom 407 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
42413adant1 1130 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
4315, 42eqtrd 2766 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5093  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012   + caddc 11015   < clt 11152  cmin 11350  cn 12131  0cn0 12387  cz 12474  +crp 12896  ..^cfzo 13560   mod cmo 13779  chash 14243  Word cword 14426   cyclShift ccsh 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-hash 14244  df-word 14427  df-concat 14484  df-substr 14555  df-pfx 14585  df-csh 14702
This theorem is referenced by:  cshwrnid  32949
  Copyright terms: Public domain W3C validator