MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   GIF version

Theorem cshwidxmodr 14505
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 13416 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nn0z 12331 . . . . . . . . . . 11 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
323ad2ant1 1132 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℤ)
4 zsubcl 12350 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
53, 4sylan 580 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
6 simpl2 1191 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℕ)
75, 6jca 512 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
87ex 413 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
91, 8sylbi 216 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
109impcom 408 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
11103adant1 1129 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
12 zmodfzo 13602 . . . 4 (((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1311, 12syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
14 cshwidxmod 14504 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
1513, 14syld3an3 1408 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
16 elfzoelz 13375 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
1716adantl 482 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
1817, 4sylan 580 . . . . . . . . . . . . 13 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
1918zred 12414 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℝ)
20 zre 12311 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2120adantl 482 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
22 nnrp 12729 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2322ad3antlr 728 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℝ+)
24 modaddmod 13618 . . . . . . . . . . . 12 (((𝐼𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
2519, 21, 23, 24syl3anc 1370 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
26 nn0cn 12231 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2726ad2antrr 723 . . . . . . . . . . . . 13 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
28 zcn 12312 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 npcan 11218 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3027, 28, 29syl2an 596 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3130oveq1d 7283 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)) = (𝐼 mod (♯‘𝑊)))
32 zmodidfzoimp 13609 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3332ad2antlr 724 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3425, 31, 333eqtrd 2782 . . . . . . . . . 10 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = 𝐼)
3534fveq2d 6771 . . . . . . . . 9 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
3635ex 413 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
3736ex 413 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
38373adant3 1131 . . . . . 6 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
391, 38sylbi 216 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
4039pm2.43i 52 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
4140impcom 408 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
42413adant1 1129 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
4315, 42eqtrd 2778 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6427  (class class class)co 7268  cc 10857  cr 10858  0cc0 10859   + caddc 10862   < clt 10997  cmin 11193  cn 11961  0cn0 12221  cz 12307  +crp 12718  ..^cfzo 13370   mod cmo 13577  chash 14032  Word cword 14205   cyclShift ccsh 14489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-inf 9190  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-hash 14033  df-word 14206  df-concat 14262  df-substr 14342  df-pfx 14372  df-csh 14490
This theorem is referenced by:  cshwrnid  31219
  Copyright terms: Public domain W3C validator