Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtrif1o Structured version   Visualization version   GIF version

Theorem grtrif1o 47909
Description: Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtrif1o ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))

Proof of Theorem grtrif1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grtri.v . . . 4 𝑉 = (Vtx‘𝐺)
2 grtri.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2grtriprop 47908 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4 f1oeq3 6838 . . . . . . . . 9 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝐹:(0..^3)–1-1-onto𝑇𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
54adantr 480 . . . . . . . 8 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
6 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦) → {(𝐹‘0), (𝐹‘1)} = {𝑥, 𝑦})
76eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
873adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
9 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘0), (𝐹‘2)} = {𝑥, 𝑧})
109eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
11103adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
12 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘1), (𝐹‘2)} = {𝑦, 𝑧})
1312eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
14133adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
158, 11, 143anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
1615biimprd 248 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
17 3ancoma 1098 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
18 prcom 4732 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
1918eleq1i 2832 . . . . . . . . . . . . . . 15 ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)
20193anbi3i 1160 . . . . . . . . . . . . . 14 (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))
2117, 20sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))
22 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧) → {(𝐹‘0), (𝐹‘1)} = {𝑥, 𝑧})
2322eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
24233adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
25 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘0), (𝐹‘2)} = {𝑥, 𝑦})
2625eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
27263adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
28 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘1), (𝐹‘2)} = {𝑧, 𝑦})
2928eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
30293adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
3124, 27, 303anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)))
3221, 31imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
3316, 32jaoi 858 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
34 3ancomb 1099 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
35 prcom 4732 . . . . . . . . . . . . . . . 16 {𝑥, 𝑦} = {𝑦, 𝑥}
3635eleq1i 2832 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)
37363anbi1i 1158 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
3834, 37sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
39 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥) → {(𝐹‘0), (𝐹‘1)} = {𝑦, 𝑥})
4039eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
41403adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
42 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘0), (𝐹‘2)} = {𝑦, 𝑧})
4342eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
44433adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
45 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘1), (𝐹‘2)} = {𝑥, 𝑧})
4645eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
47463adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
4841, 44, 473anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸)))
4938, 48imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
50 3anrot 1100 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
51 biid 261 . . . . . . . . . . . . . . 15 ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)
52 prcom 4732 . . . . . . . . . . . . . . . 16 {𝑥, 𝑧} = {𝑧, 𝑥}
5352eleq1i 2832 . . . . . . . . . . . . . . 15 ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)
5451, 36, 533anbi123i 1156 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))
5550, 54sylbb1 237 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))
56 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧) → {(𝐹‘0), (𝐹‘1)} = {𝑦, 𝑧})
5756eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
58573adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
59 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘0), (𝐹‘2)} = {𝑦, 𝑥})
6059eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
61603adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
62 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘1), (𝐹‘2)} = {𝑧, 𝑥})
6362eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
64633adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
6558, 61, 643anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸)))
6655, 65imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
6749, 66jaoi 858 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
68 3anrot 1100 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
69 biid 261 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)
7053, 19, 693anbi123i 1156 . . . . . . . . . . . . . 14 (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
7168, 70sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
72 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥) → {(𝐹‘0), (𝐹‘1)} = {𝑧, 𝑥})
7372eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
74733adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
75 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘0), (𝐹‘2)} = {𝑧, 𝑦})
7675eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
77763adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
78 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘1), (𝐹‘2)} = {𝑥, 𝑦})
7978eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
80793adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
8174, 77, 803anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
8271, 81imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
83 3anrev 1101 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
8419, 53, 363anbi123i 1156 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))
8583, 84sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))
86 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦) → {(𝐹‘0), (𝐹‘1)} = {𝑧, 𝑦})
8786eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
88873adant3 1133 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
89 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘0), (𝐹‘2)} = {𝑧, 𝑥})
9089eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
91903adant2 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
92 preq12 4735 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘1), (𝐹‘2)} = {𝑦, 𝑥})
9392eleq1d 2826 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
94933adant1 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
9588, 91, 943anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
9685, 95imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
9782, 96jaoi 858 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
9833, 67, 973jaoi 1430 . . . . . . . . . 10 (((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
99 f1of1 6847 . . . . . . . . . . 11 (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → 𝐹:(0..^3)–1-1→{𝑥, 𝑦, 𝑧})
100 fvf1tp 13829 . . . . . . . . . . 11 (𝐹:(0..^3)–1-1→{𝑥, 𝑦, 𝑧} → ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))))
10199, 100syl 17 . . . . . . . . . 10 (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))))
10298, 101syl11 33 . . . . . . . . 9 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
103102adantl 481 . . . . . . . 8 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1045, 103sylbid 240 . . . . . . 7 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1051043adant2 1132 . . . . . 6 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
106105a1i 11 . . . . 5 ((𝑦𝑉𝑧𝑉) → ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))))
107106rexlimivv 3201 . . . 4 (∃𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
108107rexlimivw 3151 . . 3 (∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1093, 108syl 17 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
110109imp 406 1 ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  {cpr 4628  {ctp 4630  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  2c2 12321  3c3 12322  ..^cfzo 13694  chash 14369  Vtxcvtx 29013  Edgcedg 29064  GrTrianglescgrtri 47904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-3o 8508  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-grtri 47905
This theorem is referenced by:  grtriclwlk3  47912
  Copyright terms: Public domain W3C validator