Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtrif1o Structured version   Visualization version   GIF version

Theorem grtrif1o 47941
Description: Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtrif1o ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))

Proof of Theorem grtrif1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grtri.v . . . 4 𝑉 = (Vtx‘𝐺)
2 grtri.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2grtriprop 47940 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4 f1oeq3 6790 . . . . . . . . 9 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝐹:(0..^3)–1-1-onto𝑇𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
54adantr 480 . . . . . . . 8 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
6 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦) → {(𝐹‘0), (𝐹‘1)} = {𝑥, 𝑦})
76eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
873adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
9 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘0), (𝐹‘2)} = {𝑥, 𝑧})
109eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
11103adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
12 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘1), (𝐹‘2)} = {𝑦, 𝑧})
1312eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
14133adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
158, 11, 143anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
1615biimprd 248 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
17 3ancoma 1097 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
18 prcom 4696 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
1918eleq1i 2819 . . . . . . . . . . . . . . 15 ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)
20193anbi3i 1159 . . . . . . . . . . . . . 14 (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))
2117, 20sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))
22 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧) → {(𝐹‘0), (𝐹‘1)} = {𝑥, 𝑧})
2322eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
24233adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
25 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘0), (𝐹‘2)} = {𝑥, 𝑦})
2625eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
27263adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
28 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘1), (𝐹‘2)} = {𝑧, 𝑦})
2928eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
30293adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
3124, 27, 303anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)))
3221, 31imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
3316, 32jaoi 857 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
34 3ancomb 1098 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
35 prcom 4696 . . . . . . . . . . . . . . . 16 {𝑥, 𝑦} = {𝑦, 𝑥}
3635eleq1i 2819 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)
37363anbi1i 1157 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
3834, 37sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))
39 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥) → {(𝐹‘0), (𝐹‘1)} = {𝑦, 𝑥})
4039eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
41403adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
42 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘0), (𝐹‘2)} = {𝑦, 𝑧})
4342eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
44433adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
45 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → {(𝐹‘1), (𝐹‘2)} = {𝑥, 𝑧})
4645eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
47463adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸))
4841, 44, 473anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸)))
4938, 48imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
50 3anrot 1099 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
51 biid 261 . . . . . . . . . . . . . . 15 ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)
52 prcom 4696 . . . . . . . . . . . . . . . 16 {𝑥, 𝑧} = {𝑧, 𝑥}
5352eleq1i 2819 . . . . . . . . . . . . . . 15 ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)
5451, 36, 533anbi123i 1155 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))
5550, 54sylbb1 237 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))
56 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧) → {(𝐹‘0), (𝐹‘1)} = {𝑦, 𝑧})
5756eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
58573adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
59 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘0), (𝐹‘2)} = {𝑦, 𝑥})
6059eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
61603adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
62 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘1), (𝐹‘2)} = {𝑧, 𝑥})
6362eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
64633adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
6558, 61, 643anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸)))
6655, 65imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
6749, 66jaoi 857 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
68 3anrot 1099 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
69 biid 261 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)
7053, 19, 693anbi123i 1155 . . . . . . . . . . . . . 14 (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
7168, 70sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
72 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥) → {(𝐹‘0), (𝐹‘1)} = {𝑧, 𝑥})
7372eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
74733adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
75 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘0), (𝐹‘2)} = {𝑧, 𝑦})
7675eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
77763adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
78 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → {(𝐹‘1), (𝐹‘2)} = {𝑥, 𝑦})
7978eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
80793adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
8174, 77, 803anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
8271, 81imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
83 3anrev 1100 . . . . . . . . . . . . . 14 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
8419, 53, 363anbi123i 1155 . . . . . . . . . . . . . 14 (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))
8583, 84sylbb 219 . . . . . . . . . . . . 13 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))
86 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦) → {(𝐹‘0), (𝐹‘1)} = {𝑧, 𝑦})
8786eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
88873adant3 1132 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
89 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘0), (𝐹‘2)} = {𝑧, 𝑥})
9089eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘0) = 𝑧 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
91903adant2 1131 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸))
92 preq12 4699 . . . . . . . . . . . . . . . 16 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → {(𝐹‘1), (𝐹‘2)} = {𝑦, 𝑥})
9392eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
94933adant1 1130 . . . . . . . . . . . . . 14 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → ({(𝐹‘1), (𝐹‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
9588, 91, 943anbi123d 1438 . . . . . . . . . . . . 13 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → (({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
9685, 95imbitrrid 246 . . . . . . . . . . . 12 (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
9782, 96jaoi 857 . . . . . . . . . . 11 ((((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
9833, 67, 973jaoi 1430 . . . . . . . . . 10 (((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
99 f1of1 6799 . . . . . . . . . . 11 (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → 𝐹:(0..^3)–1-1→{𝑥, 𝑦, 𝑧})
100 fvf1tp 13751 . . . . . . . . . . 11 (𝐹:(0..^3)–1-1→{𝑥, 𝑦, 𝑧} → ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))))
10199, 100syl 17 . . . . . . . . . 10 (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑥 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑦)) ∨ (((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑧) ∨ ((𝐹‘0) = 𝑦 ∧ (𝐹‘1) = 𝑧 ∧ (𝐹‘2) = 𝑥)) ∨ (((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑥 ∧ (𝐹‘2) = 𝑦) ∨ ((𝐹‘0) = 𝑧 ∧ (𝐹‘1) = 𝑦 ∧ (𝐹‘2) = 𝑥))))
10298, 101syl11 33 . . . . . . . . 9 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
103102adantl 481 . . . . . . . 8 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1045, 103sylbid 240 . . . . . . 7 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1051043adant2 1131 . . . . . 6 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
106105a1i 11 . . . . 5 ((𝑦𝑉𝑧𝑉) → ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))))
107106rexlimivv 3179 . . . 4 (∃𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
108107rexlimivw 3130 . . 3 (∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
1093, 108syl 17 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝐹:(0..^3)–1-1-onto𝑇 → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)))
110109imp 406 1 ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {cpr 4591  {ctp 4593  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  ..^cfzo 13615  chash 14295  Vtxcvtx 28923  Edgcedg 28974  GrTrianglescgrtri 47936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-3o 8436  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-grtri 47937
This theorem is referenced by:  grtriclwlk3  47944
  Copyright terms: Public domain W3C validator