Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  retanhcl Structured version   Visualization version   GIF version

Theorem retanhcl 15502
 Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
retanhcl (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ)

Proof of Theorem retanhcl
StepHypRef Expression
1 ax-icn 10585 . . . . . 6 i ∈ ℂ
2 recn 10616 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 10610 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 587 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 15500 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 12426 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 15471 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 584 . . . 4 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7163 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 15473 . . . 4 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 15501 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 10658 . . . 4 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . 4 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11064 . . . . 5 i ≠ 0
1514a1i 11 . . . 4 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 11430 . . 3 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
179, 16eqtrd 2861 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
18 resinhcl 15499 . . 3 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ)
1918, 5rerpdivcld 12452 . 2 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) ∈ ℝ)
2017, 19eqeltrd 2918 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  ℝcr 10525  0cc0 10526  ici 10528   · cmul 10531   / cdiv 11286  sincsin 15407  cosccos 15408  tanctan 15409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-tan 15415 This theorem is referenced by:  tanhbnd  15504  tanregt0  25036
 Copyright terms: Public domain W3C validator