Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrex | Structured version Visualization version GIF version |
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkrex.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkrex.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lshpkrex.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lshpkrex | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2739 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
3 | eqid 2739 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | eqid 2739 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
5 | lshpkrex.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lveclmod 20349 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 1, 2, 3, 4, 5, 6 | islshpsm 36973 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))) |
8 | simp3 1136 | . . . 4 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
9 | 7, 8 | syl6bi 252 | . . 3 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) |
11 | eqid 2739 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
12 | simp1l 1195 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec) | |
13 | simp1r 1196 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈 ∈ 𝐻) | |
14 | simp2 1135 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊)) | |
15 | simp3 1136 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
16 | eqid 2739 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
17 | eqid 2739 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
18 | eqid 2739 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
19 | eqid 2739 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) | |
20 | lshpkrex.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
21 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 37109 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹) |
22 | lshpkrex.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
23 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 37110 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) |
24 | fveqeq2 6777 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) → ((𝐾‘𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈)) | |
25 | 24 | rspcev 3560 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
26 | 21, 23, 25 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
27 | 26 | rexlimdv3a 3216 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈)) |
28 | 10, 27 | mpd 15 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 {csn 4566 ↦ cmpt 5161 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Scalarcsca 16946 ·𝑠 cvsca 16947 LSSumclsm 19220 LSubSpclss 20174 LSpanclspn 20214 LVecclvec 20345 LSHypclsh 36968 LFnlclfn 37050 LKerclk 37078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cntz 18904 df-lsm 19222 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-drng 19974 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lvec 20346 df-lshyp 36970 df-lfl 37051 df-lkr 37079 |
This theorem is referenced by: lshpset2N 37112 mapdordlem2 39630 |
Copyright terms: Public domain | W3C validator |