Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrex Structured version   Visualization version   GIF version

Theorem lshpkrex 37059
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrex.h 𝐻 = (LSHyp‘𝑊)
lshpkrex.f 𝐹 = (LFnl‘𝑊)
lshpkrex.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkrex ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊
Allowed substitution hint:   𝐻(𝑔)

Proof of Theorem lshpkrex
Dummy variables 𝑧 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2738 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 eqid 2738 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
5 lshpkrex.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lveclmod 20283 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36921 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))))
8 simp3 1136 . . . 4 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
97, 8syl6bi 252 . . 3 (𝑊 ∈ LVec → (𝑈𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))
109imp 406 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
11 eqid 2738 . . . . 5 (+g𝑊) = (+g𝑊)
12 simp1l 1195 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec)
13 simp1r 1196 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈𝐻)
14 simp2 1135 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊))
15 simp3 1136 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
16 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
17 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
18 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
19 eqid 2738 . . . . 5 (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))
20 lshpkrex.f . . . . 5 𝐹 = (LFnl‘𝑊)
211, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20lshpkrcl 37057 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹)
22 lshpkrex.k . . . . 5 𝐾 = (LKer‘𝑊)
231, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22lshpkr 37058 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈)
24 fveqeq2 6765 . . . . 5 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → ((𝐾𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈))
2524rspcev 3552 . . . 4 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2621, 23, 25syl2anc 583 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2726rexlimdv3a 3214 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈))
2810, 27mpd 15 1 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {csn 4558  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  LSSumclsm 19154  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918  df-lfl 36999  df-lkr 37027
This theorem is referenced by:  lshpset2N  37060  mapdordlem2  39578
  Copyright terms: Public domain W3C validator