![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrex | Structured version Visualization version GIF version |
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkrex.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkrex.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lshpkrex.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lshpkrex | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
3 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | eqid 2740 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
5 | lshpkrex.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lveclmod 21128 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 1, 2, 3, 4, 5, 6 | islshpsm 38936 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))) |
8 | simp3 1138 | . . . 4 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
9 | 7, 8 | biimtrdi 253 | . . 3 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) |
11 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
12 | simp1l 1197 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec) | |
13 | simp1r 1198 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈 ∈ 𝐻) | |
14 | simp2 1137 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊)) | |
15 | simp3 1138 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
16 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
17 | eqid 2740 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
18 | eqid 2740 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
19 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) | |
20 | lshpkrex.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
21 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 39072 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹) |
22 | lshpkrex.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
23 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 39073 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) |
24 | fveqeq2 6929 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) → ((𝐾‘𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈)) | |
25 | 24 | rspcev 3635 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
26 | 21, 23, 25 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
27 | 26 | rexlimdv3a 3165 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈)) |
28 | 10, 27 | mpd 15 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 LSSumclsm 19676 LSubSpclss 20952 LSpanclspn 20992 LVecclvec 21124 LSHypclsh 38931 LFnlclfn 39013 LKerclk 39041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lshyp 38933 df-lfl 39014 df-lkr 39042 |
This theorem is referenced by: lshpset2N 39075 mapdordlem2 41594 |
Copyright terms: Public domain | W3C validator |