Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrex Structured version   Visualization version   GIF version

Theorem lshpkrex 36414
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrex.h 𝐻 = (LSHyp‘𝑊)
lshpkrex.f 𝐹 = (LFnl‘𝑊)
lshpkrex.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkrex ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊
Allowed substitution hint:   𝐻(𝑔)

Proof of Theorem lshpkrex
Dummy variables 𝑧 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2798 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2798 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 eqid 2798 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
5 lshpkrex.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36276 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))))
8 simp3 1135 . . . 4 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
97, 8syl6bi 256 . . 3 (𝑊 ∈ LVec → (𝑈𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))
109imp 410 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
11 eqid 2798 . . . . 5 (+g𝑊) = (+g𝑊)
12 simp1l 1194 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec)
13 simp1r 1195 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈𝐻)
14 simp2 1134 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊))
15 simp3 1135 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
16 eqid 2798 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
17 eqid 2798 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
18 eqid 2798 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
19 eqid 2798 . . . . 5 (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))
20 lshpkrex.f . . . . 5 𝐹 = (LFnl‘𝑊)
211, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20lshpkrcl 36412 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹)
22 lshpkrex.k . . . . 5 𝐾 = (LKer‘𝑊)
231, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22lshpkr 36413 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈)
24 fveqeq2 6654 . . . . 5 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → ((𝐾𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈))
2524rspcev 3571 . . . 4 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2621, 23, 25syl2anc 587 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2726rexlimdv3a 3245 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈))
2810, 27mpd 15 1 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {csn 4525  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  LSSumclsm 18751  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867  LSHypclsh 36271  LFnlclfn 36353  LKerclk 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lshyp 36273  df-lfl 36354  df-lkr 36382
This theorem is referenced by:  lshpset2N  36415  mapdordlem2  38933
  Copyright terms: Public domain W3C validator