Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrex Structured version   Visualization version   GIF version

Theorem lshpkrex 34925
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrex.h 𝐻 = (LSHyp‘𝑊)
lshpkrex.f 𝐹 = (LFnl‘𝑊)
lshpkrex.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkrex ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊
Allowed substitution hint:   𝐻(𝑔)

Proof of Theorem lshpkrex
Dummy variables 𝑧 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2771 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2771 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 eqid 2771 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
5 lshpkrex.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lveclmod 19319 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 34787 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))))
8 simp3 1132 . . . 4 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
97, 8syl6bi 243 . . 3 (𝑊 ∈ LVec → (𝑈𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))
109imp 393 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
11 eqid 2771 . . . . 5 (+g𝑊) = (+g𝑊)
12 simp1l 1239 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec)
13 simp1r 1240 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈𝐻)
14 simp2 1131 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊))
15 simp3 1132 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
16 eqid 2771 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
17 eqid 2771 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
18 eqid 2771 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
19 eqid 2771 . . . . 5 (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))
20 lshpkrex.f . . . . 5 𝐹 = (LFnl‘𝑊)
211, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20lshpkrcl 34923 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹)
22 lshpkrex.k . . . . 5 𝐾 = (LKer‘𝑊)
231, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22lshpkr 34924 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈)
24 fveq2 6333 . . . . . 6 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → (𝐾𝑔) = (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))))
2524eqeq1d 2773 . . . . 5 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → ((𝐾𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈))
2625rspcev 3460 . . . 4 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2721, 23, 26syl2anc 573 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2827rexlimdv3a 3181 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈))
2910, 28mpd 15 1 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  {csn 4317  cmpt 4864  cfv 6030  crio 6756  (class class class)co 6796  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  LSSumclsm 18256  LSubSpclss 19142  LSpanclspn 19184  LVecclvec 19315  LSHypclsh 34782  LFnlclfn 34864  LKerclk 34892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316  df-lshyp 34784  df-lfl 34865  df-lkr 34893
This theorem is referenced by:  lshpset2N  34926  mapdordlem2  37445
  Copyright terms: Public domain W3C validator