Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
2 | | eqid 2731 |
. . . . 5
β’
(LSpanβπ) =
(LSpanβπ) |
3 | | eqid 2731 |
. . . . 5
β’
(LSubSpβπ) =
(LSubSpβπ) |
4 | | eqid 2731 |
. . . . 5
β’
(LSSumβπ) =
(LSSumβπ) |
5 | | lshpkrex.h |
. . . . 5
β’ π» = (LSHypβπ) |
6 | | lveclmod 20862 |
. . . . 5
β’ (π β LVec β π β LMod) |
7 | 1, 2, 3, 4, 5, 6 | islshpsm 38154 |
. . . 4
β’ (π β LVec β (π β π» β (π β (LSubSpβπ) β§ π β (Baseβπ) β§ βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)))) |
8 | | simp3 1137 |
. . . 4
β’ ((π β (LSubSpβπ) β§ π β (Baseβπ) β§ βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) |
9 | 7, 8 | syl6bi 253 |
. . 3
β’ (π β LVec β (π β π» β βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ))) |
10 | 9 | imp 406 |
. 2
β’ ((π β LVec β§ π β π») β βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) |
11 | | eqid 2731 |
. . . . 5
β’
(+gβπ) = (+gβπ) |
12 | | simp1l 1196 |
. . . . 5
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β π β LVec) |
13 | | simp1r 1197 |
. . . . 5
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β π β π») |
14 | | simp2 1136 |
. . . . 5
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β π§ β (Baseβπ)) |
15 | | simp3 1137 |
. . . . 5
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) |
16 | | eqid 2731 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
17 | | eqid 2731 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
18 | | eqid 2731 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
19 | | eqid 2731 |
. . . . 5
β’ (π₯ β (Baseβπ) β¦ (β©π β
(Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§)))) = (π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§)))) |
20 | | lshpkrex.f |
. . . . 5
β’ πΉ = (LFnlβπ) |
21 | 1, 11, 2, 4, 5, 12,
13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 38290 |
. . . 4
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β (π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§)))) β πΉ) |
22 | | lshpkrex.k |
. . . . 5
β’ πΎ = (LKerβπ) |
23 | 1, 11, 2, 4, 5, 12,
13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 38291 |
. . . 4
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β (πΎβ(π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§))))) = π) |
24 | | fveqeq2 6900 |
. . . . 5
β’ (π = (π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§)))) β ((πΎβπ) = π β (πΎβ(π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§))))) = π)) |
25 | 24 | rspcev 3612 |
. . . 4
β’ (((π₯ β (Baseβπ) β¦ (β©π β
(Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§)))) β πΉ β§ (πΎβ(π₯ β (Baseβπ) β¦ (β©π β (Baseβ(Scalarβπ))βπ¦ β π π₯ = (π¦(+gβπ)(π( Β·π
βπ)π§))))) = π) β βπ β πΉ (πΎβπ) = π) |
26 | 21, 23, 25 | syl2anc 583 |
. . 3
β’ (((π β LVec β§ π β π») β§ π§ β (Baseβπ) β§ (π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ)) β βπ β πΉ (πΎβπ) = π) |
27 | 26 | rexlimdv3a 3158 |
. 2
β’ ((π β LVec β§ π β π») β (βπ§ β (Baseβπ)(π(LSSumβπ)((LSpanβπ)β{π§})) = (Baseβπ) β βπ β πΉ (πΎβπ) = π)) |
28 | 10, 27 | mpd 15 |
1
β’ ((π β LVec β§ π β π») β βπ β πΉ (πΎβπ) = π) |