| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrex | Structured version Visualization version GIF version | ||
| Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkrex.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkrex.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpkrex.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lshpkrex | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 5 | lshpkrex.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | lveclmod 21051 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 1, 2, 3, 4, 5, 6 | islshpsm 38927 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))) |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 9 | 7, 8 | biimtrdi 253 | . . 3 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) |
| 11 | eqid 2734 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | simp1l 1197 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec) | |
| 13 | simp1r 1198 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈 ∈ 𝐻) | |
| 14 | simp2 1137 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊)) | |
| 15 | simp3 1138 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 16 | eqid 2734 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 17 | eqid 2734 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 18 | eqid 2734 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 19 | eqid 2734 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) | |
| 20 | lshpkrex.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 21 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 39063 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹) |
| 22 | lshpkrex.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
| 23 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 39064 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) |
| 24 | fveqeq2 6882 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) → ((𝐾‘𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈)) | |
| 25 | 24 | rspcev 3599 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 26 | 21, 23, 25 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 27 | 26 | rexlimdv3a 3143 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈)) |
| 28 | 10, 27 | mpd 15 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {csn 4599 ↦ cmpt 5199 ‘cfv 6528 ℩crio 7356 (class class class)co 7400 Basecbs 17215 +gcplusg 17258 Scalarcsca 17261 ·𝑠 cvsca 17262 LSSumclsm 19602 LSubSpclss 20875 LSpanclspn 20915 LVecclvec 21047 LSHypclsh 38922 LFnlclfn 39004 LKerclk 39032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19093 df-cntz 19287 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-invr 20335 df-drng 20678 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lvec 21048 df-lshyp 38924 df-lfl 39005 df-lkr 39033 |
| This theorem is referenced by: lshpset2N 39066 mapdordlem2 41585 |
| Copyright terms: Public domain | W3C validator |