| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrex | Structured version Visualization version GIF version | ||
| Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkrex.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkrex.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpkrex.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lshpkrex | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 5 | lshpkrex.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | lveclmod 21069 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 1, 2, 3, 4, 5, 6 | islshpsm 39003 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))) |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 9 | 7, 8 | biimtrdi 253 | . . 3 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) |
| 11 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | simp1l 1198 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec) | |
| 13 | simp1r 1199 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈 ∈ 𝐻) | |
| 14 | simp2 1137 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊)) | |
| 15 | simp3 1138 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 16 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 17 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 18 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 19 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) | |
| 20 | lshpkrex.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 21 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 39139 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹) |
| 22 | lshpkrex.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
| 23 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 39140 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) |
| 24 | fveqeq2 6890 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) → ((𝐾‘𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈)) | |
| 25 | 24 | rspcev 3606 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 26 | 21, 23, 25 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 27 | 26 | rexlimdv3a 3146 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈)) |
| 28 | 10, 27 | mpd 15 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 LSSumclsm 19620 LSubSpclss 20893 LSpanclspn 20933 LVecclvec 21065 LSHypclsh 38998 LFnlclfn 39080 LKerclk 39108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lshyp 39000 df-lfl 39081 df-lkr 39109 |
| This theorem is referenced by: lshpset2N 39142 mapdordlem2 41661 |
| Copyright terms: Public domain | W3C validator |