Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrex Structured version   Visualization version   GIF version

Theorem lshpkrex 36256
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrex.h 𝐻 = (LSHyp‘𝑊)
lshpkrex.f 𝐹 = (LFnl‘𝑊)
lshpkrex.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkrex ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊
Allowed substitution hint:   𝐻(𝑔)

Proof of Theorem lshpkrex
Dummy variables 𝑧 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2823 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2823 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 eqid 2823 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
5 lshpkrex.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lveclmod 19880 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36118 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))))
8 simp3 1134 . . . 4 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
97, 8syl6bi 255 . . 3 (𝑊 ∈ LVec → (𝑈𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))
109imp 409 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
11 eqid 2823 . . . . 5 (+g𝑊) = (+g𝑊)
12 simp1l 1193 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec)
13 simp1r 1194 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈𝐻)
14 simp2 1133 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊))
15 simp3 1134 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
16 eqid 2823 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
17 eqid 2823 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
18 eqid 2823 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
19 eqid 2823 . . . . 5 (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))
20 lshpkrex.f . . . . 5 𝐹 = (LFnl‘𝑊)
211, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20lshpkrcl 36254 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹)
22 lshpkrex.k . . . . 5 𝐾 = (LKer‘𝑊)
231, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22lshpkr 36255 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈)
24 fveqeq2 6681 . . . . 5 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → ((𝐾𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈))
2524rspcev 3625 . . . 4 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2621, 23, 25syl2anc 586 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2726rexlimdv3a 3288 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈))
2810, 27mpd 15 1 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {csn 4569  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570   ·𝑠 cvsca 16571  LSSumclsm 18761  LSubSpclss 19705  LSpanclspn 19745  LVecclvec 19876  LSHypclsh 36113  LFnlclfn 36195  LKerclk 36223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lshyp 36115  df-lfl 36196  df-lkr 36224
This theorem is referenced by:  lshpset2N  36257  mapdordlem2  38775
  Copyright terms: Public domain W3C validator