| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrex | Structured version Visualization version GIF version | ||
| Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkrex.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkrex.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpkrex.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lshpkrex | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 5 | lshpkrex.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | lveclmod 21020 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 1, 2, 3, 4, 5, 6 | islshpsm 38980 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))) |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 9 | 7, 8 | biimtrdi 253 | . . 3 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) |
| 11 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | simp1l 1198 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec) | |
| 13 | simp1r 1199 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈 ∈ 𝐻) | |
| 14 | simp2 1137 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊)) | |
| 15 | simp3 1138 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) | |
| 16 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 18 | eqid 2730 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) | |
| 20 | lshpkrex.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 21 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20 | lshpkrcl 39116 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹) |
| 22 | lshpkrex.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
| 23 | 1, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22 | lshpkr 39117 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) |
| 24 | fveqeq2 6870 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) → ((𝐾‘𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈)) | |
| 25 | 24 | rspcev 3591 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦 ∈ 𝑈 𝑥 = (𝑦(+g‘𝑊)(𝑘( ·𝑠 ‘𝑊)𝑧))))) = 𝑈) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 26 | 21, 23, 25 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| 27 | 26 | rexlimdv3a 3139 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈)) |
| 28 | 10, 27 | mpd 15 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {csn 4592 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 LSSumclsm 19571 LSubSpclss 20844 LSpanclspn 20884 LVecclvec 21016 LSHypclsh 38975 LFnlclfn 39057 LKerclk 39085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lshyp 38977 df-lfl 39058 df-lkr 39086 |
| This theorem is referenced by: lshpset2N 39119 mapdordlem2 41638 |
| Copyright terms: Public domain | W3C validator |