Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrex Structured version   Visualization version   GIF version

Theorem lshpkrex 36360
Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrex.h 𝐻 = (LSHyp‘𝑊)
lshpkrex.f 𝐹 = (LFnl‘𝑊)
lshpkrex.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkrex ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊
Allowed substitution hint:   𝐻(𝑔)

Proof of Theorem lshpkrex
Dummy variables 𝑧 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2824 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2824 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 eqid 2824 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
5 lshpkrex.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lveclmod 19881 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36222 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))))
8 simp3 1135 . . . 4 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
97, 8syl6bi 256 . . 3 (𝑊 ∈ LVec → (𝑈𝐻 → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)))
109imp 410 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
11 eqid 2824 . . . . 5 (+g𝑊) = (+g𝑊)
12 simp1l 1194 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑊 ∈ LVec)
13 simp1r 1195 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑈𝐻)
14 simp2 1134 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → 𝑧 ∈ (Base‘𝑊))
15 simp3 1135 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊))
16 eqid 2824 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
17 eqid 2824 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
18 eqid 2824 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
19 eqid 2824 . . . . 5 (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))
20 lshpkrex.f . . . . 5 𝐹 = (LFnl‘𝑊)
211, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20lshpkrcl 36358 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹)
22 lshpkrex.k . . . . 5 𝐾 = (LKer‘𝑊)
231, 11, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22lshpkr 36359 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈)
24 fveqeq2 6671 . . . . 5 (𝑔 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) → ((𝐾𝑔) = 𝑈 ↔ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈))
2524rspcev 3610 . . . 4 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧)))) ∈ 𝐹 ∧ (𝐾‘(𝑥 ∈ (Base‘𝑊) ↦ (𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑦𝑈 𝑥 = (𝑦(+g𝑊)(𝑘( ·𝑠𝑊)𝑧))))) = 𝑈) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2621, 23, 25syl2anc 587 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝐻) ∧ 𝑧 ∈ (Base‘𝑊) ∧ (𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊)) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
2726rexlimdv3a 3279 . 2 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → (∃𝑧 ∈ (Base‘𝑊)(𝑈(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑧})) = (Base‘𝑊) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈))
2810, 27mpd 15 1 ((𝑊 ∈ LVec ∧ 𝑈𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  {csn 4551  cmpt 5133  cfv 6344  crio 7107  (class class class)co 7150  Basecbs 16486  +gcplusg 16568  Scalarcsca 16571   ·𝑠 cvsca 16572  LSSumclsm 18762  LSubSpclss 19706  LSpanclspn 19746  LVecclvec 19877  LSHypclsh 36217  LFnlclfn 36299  LKerclk 36327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19379  df-dvdsr 19397  df-unit 19398  df-invr 19428  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lshyp 36219  df-lfl 36300  df-lkr 36328
This theorem is referenced by:  lshpset2N  36361  mapdordlem2  38879
  Copyright terms: Public domain W3C validator