Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem8 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem8.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppndvlem8.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppndvlem8.a | ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
knoppndvlem8.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem8.j | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
knoppndvlem8.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
knoppndvlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem8.1 | ⊢ (𝜑 → 2 ∥ 𝑀) |
Ref | Expression |
---|---|
knoppndvlem8 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem8.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | knoppndvlem8.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
3 | knoppndvlem8.a | . . 3 ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) | |
4 | knoppndvlem8.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
5 | knoppndvlem8.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | knoppndvlem8.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | 1, 2, 3, 4, 5, 6 | knoppndvlem7 34625 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) |
8 | knoppndvlem8.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝑀) | |
9 | 2z 12282 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℤ) |
11 | 2ne0 12007 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
13 | 10, 12, 5 | 3jca 1126 | . . . . . 6 ⊢ (𝜑 → (2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ)) |
14 | dvdsval2 15894 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ) → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) |
16 | 8, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℤ) |
17 | 1, 16 | dnizeq0 34582 | . . 3 ⊢ (𝜑 → (𝑇‘(𝑀 / 2)) = 0) |
18 | 17 | oveq2d 7271 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶↑𝐽) · 0)) |
19 | knoppndvlem8.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
20 | 19 | knoppndvlem3 34621 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
21 | 20 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
22 | 21 | recnd 10934 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 22, 4 | expcld 13792 | . . 3 ⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
24 | 23 | mul01d 11104 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · 0) = 0) |
25 | 7, 18, 24 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 − cmin 11135 -cneg 11136 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 (,)cioo 13008 ⌊cfl 13438 ↑cexp 13710 abscabs 14873 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioo 13012 df-ico 13014 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 |
This theorem is referenced by: knoppndvlem10 34628 |
Copyright terms: Public domain | W3C validator |