| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36529. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem8.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndvlem8.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndvlem8.a | ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
| knoppndvlem8.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem8.j | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| knoppndvlem8.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| knoppndvlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem8.1 | ⊢ (𝜑 → 2 ∥ 𝑀) |
| Ref | Expression |
|---|---|
| knoppndvlem8 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem8.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | knoppndvlem8.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 3 | knoppndvlem8.a | . . 3 ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) | |
| 4 | knoppndvlem8.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
| 5 | knoppndvlem8.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | knoppndvlem8.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 7 | 1, 2, 3, 4, 5, 6 | knoppndvlem7 36513 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) |
| 8 | knoppndvlem8.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝑀) | |
| 9 | 2z 12572 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℤ) |
| 11 | 2ne0 12297 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
| 13 | 10, 12, 5 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ)) |
| 14 | dvdsval2 16232 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ) → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) |
| 16 | 8, 15 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℤ) |
| 17 | 1, 16 | dnizeq0 36470 | . . 3 ⊢ (𝜑 → (𝑇‘(𝑀 / 2)) = 0) |
| 18 | 17 | oveq2d 7406 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶↑𝐽) · 0)) |
| 19 | knoppndvlem8.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 20 | 19 | knoppndvlem3 36509 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 21 | 20 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 22 | 21 | recnd 11209 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 23 | 22, 4 | expcld 14118 | . . 3 ⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
| 24 | 23 | mul01d 11380 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · 0) = 0) |
| 25 | 7, 18, 24 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤcz 12536 (,)cioo 13313 ⌊cfl 13759 ↑cexp 14033 abscabs 15207 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ioo 13317 df-ico 13319 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 |
| This theorem is referenced by: knoppndvlem10 36516 |
| Copyright terms: Public domain | W3C validator |