![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvs0N | Structured version Visualization version GIF version |
Description: A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lcdvs0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvs0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvs0.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcdvs0.r | ⊢ 𝑅 = (Base‘𝑆) |
lcdvs0.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvs0.t | ⊢ · = ( ·𝑠 ‘𝐶) |
lcdvs0.o | ⊢ 0 = (0g‘𝐶) |
lcdvs0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcdvs0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
lcdvs0N | ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvs0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdvs0.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | lcdvs0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 40953 | . 2 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | lcdvs0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
6 | lcdvs0.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lcdvs0.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcdvs0.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
9 | eqid 2724 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
10 | eqid 2724 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
11 | 1, 6, 7, 8, 2, 9, 10, 3 | lcdsbase 40961 | . . 3 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝑅) |
12 | 5, 11 | eleqtrrd 2828 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝐶))) |
13 | lcdvs0.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
14 | lcdvs0.o | . . 3 ⊢ 0 = (0g‘𝐶) | |
15 | 9, 13, 10, 14 | lmodvs0 20732 | . 2 ⊢ ((𝐶 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐶))) → (𝑋 · 0 ) = 0 ) |
16 | 4, 12, 15 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17384 LModclmod 20696 HLchlt 38710 LHypclh 39345 DVecHcdvh 40439 LCDualclcd 40947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 38313 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17386 df-mre 17529 df-mrc 17530 df-acs 17532 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-cntz 19223 df-oppg 19252 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20579 df-lmod 20698 df-lss 20769 df-lsp 20809 df-lvec 20941 df-lsatoms 38336 df-lshyp 38337 df-lcv 38379 df-lfl 38418 df-lkr 38446 df-ldual 38484 df-oposet 38536 df-ol 38538 df-oml 38539 df-covers 38626 df-ats 38627 df-atl 38658 df-cvlat 38682 df-hlat 38711 df-llines 38859 df-lplanes 38860 df-lvols 38861 df-lines 38862 df-psubsp 38864 df-pmap 38865 df-padd 39157 df-lhyp 39349 df-laut 39350 df-ldil 39465 df-ltrn 39466 df-trl 39520 df-tgrp 40104 df-tendo 40116 df-edring 40118 df-dveca 40364 df-disoa 40390 df-dvech 40440 df-dib 40500 df-dic 40534 df-dih 40590 df-doch 40709 df-djh 40756 df-lcdual 40948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |