Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvs0N | Structured version Visualization version GIF version |
Description: A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lcdvs0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvs0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvs0.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcdvs0.r | ⊢ 𝑅 = (Base‘𝑆) |
lcdvs0.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvs0.t | ⊢ · = ( ·𝑠 ‘𝐶) |
lcdvs0.o | ⊢ 0 = (0g‘𝐶) |
lcdvs0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcdvs0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
lcdvs0N | ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvs0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdvs0.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | lcdvs0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 39806 | . 2 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | lcdvs0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
6 | lcdvs0.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lcdvs0.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcdvs0.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
9 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
10 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
11 | 1, 6, 7, 8, 2, 9, 10, 3 | lcdsbase 39814 | . . 3 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝑅) |
12 | 5, 11 | eleqtrrd 2840 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝐶))) |
13 | lcdvs0.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
14 | lcdvs0.o | . . 3 ⊢ 0 = (0g‘𝐶) | |
15 | 9, 13, 10, 14 | lmodvs0 20206 | . 2 ⊢ ((𝐶 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐶))) → (𝑋 · 0 ) = 0 ) |
16 | 4, 12, 15 | syl2anc 585 | 1 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 Scalarcsca 17014 ·𝑠 cvsca 17015 0gc0g 17199 LModclmod 20172 HLchlt 37564 LHypclh 38198 DVecHcdvh 39292 LCDualclcd 39800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-riotaBAD 37167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-undef 8120 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-0g 17201 df-mre 17344 df-mrc 17345 df-acs 17347 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-p1 18193 df-lat 18199 df-clat 18266 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-grp 18629 df-minusg 18630 df-sbg 18631 df-subg 18801 df-cntz 18972 df-oppg 18999 df-lsm 19290 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-ring 19834 df-oppr 19911 df-dvdsr 19932 df-unit 19933 df-invr 19963 df-dvr 19974 df-drng 20042 df-lmod 20174 df-lss 20243 df-lsp 20283 df-lvec 20414 df-lsatoms 37190 df-lshyp 37191 df-lcv 37233 df-lfl 37272 df-lkr 37300 df-ldual 37338 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 df-llines 37712 df-lplanes 37713 df-lvols 37714 df-lines 37715 df-psubsp 37717 df-pmap 37718 df-padd 38010 df-lhyp 38202 df-laut 38203 df-ldil 38318 df-ltrn 38319 df-trl 38373 df-tgrp 38957 df-tendo 38969 df-edring 38971 df-dveca 39217 df-disoa 39243 df-dvech 39293 df-dib 39353 df-dic 39387 df-dih 39443 df-doch 39562 df-djh 39609 df-lcdual 39801 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |