MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwfi Structured version   Visualization version   GIF version

Theorem pmatcollpwfi 21084
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pmatcollpwfi ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑃(𝑠)   𝑇(𝑛,𝑠)   (𝑠)   (𝑛,𝑠)   𝑋(𝑠)

Proof of Theorem pmatcollpwfi
StepHypRef Expression
1 crngring 19021 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
213ad2ant2 1114 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3 simp3 1118 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
4 pmatcollpw.p . . . 4 𝑃 = (Poly1𝑅)
5 pmatcollpw.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
6 pmatcollpw.b . . . 4 𝐵 = (Base‘𝐶)
7 eqid 2772 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2772 . . . 4 (0g‘(𝑁 Mat 𝑅)) = (0g‘(𝑁 Mat 𝑅))
94, 5, 6, 7, 8decpmataa0 21070 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))))
102, 3, 9syl2anc 576 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))))
11 pmatcollpw.m . . . . . . 7 = ( ·𝑠𝐶)
12 pmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
13 pmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
14 pmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
154, 5, 6, 11, 12, 13, 14pmatcollpw 21083 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
1615ad2antrr 713 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
17 eqid 2772 . . . . . 6 (0g𝐶) = (0g𝐶)
18 simp1 1116 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
194, 5pmatring 20995 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
2018, 2, 19syl2anc 576 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ Ring)
21 ringcmn 19044 . . . . . . . 8 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
2220, 21syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ CMnd)
2322ad2antrr 713 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝐶 ∈ CMnd)
2418adantr 473 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
252adantr 473 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
264ply1ring 20109 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2725, 26syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring)
282anim1i 605 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0))
29 eqid 2772 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
30 eqid 2772 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
314, 13, 29, 12, 30ply1moncl 20132 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
3228, 31syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
33 simpl2 1172 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
343adantr 473 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
35 simpr 477 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
36 eqid 2772 . . . . . . . . . . . 12 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
374, 5, 6, 7, 36decpmatcl 21069 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
3833, 34, 35, 37syl3anc 1351 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
3914, 7, 36, 4, 5, 6mat2pmatbas0 21029 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)
4024, 25, 38, 39syl3anc 1351 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)
4130, 5, 6, 11matvscl 20734 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4224, 27, 32, 40, 41syl22anc 826 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4342ralrimiva 3126 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4443ad2antrr 713 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
45 simplr 756 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑠 ∈ ℕ0)
46 fveq2 6493 . . . . . . . . . . . . 13 ((𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑇‘(0g‘(𝑁 Mat 𝑅))))
472, 18jca 504 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
4847ad2antrr 713 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
49 eqid 2772 . . . . . . . . . . . . . . 15 (0g‘(𝑁 Mat 𝑃)) = (0g‘(𝑁 Mat 𝑃))
5014, 4, 8, 490mat2pmat 21038 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g‘(𝑁 Mat 𝑅))) = (0g‘(𝑁 Mat 𝑃)))
5148, 50syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(0g‘(𝑁 Mat 𝑅))) = (0g‘(𝑁 Mat 𝑃)))
5246, 51sylan9eqr 2830 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (0g‘(𝑁 Mat 𝑃)))
5352oveq2d 6986 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))))
544, 5pmatlmod 20996 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
5518, 2, 54syl2anc 576 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ LMod)
5655ad2antrr 713 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ LMod)
5728adantlr 702 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0))
5857, 31syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
594ply1crng 20059 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6059anim2i 607 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
61603adant3 1112 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
625matsca2 20723 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
6361, 62syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝐶))
6463eqcomd 2778 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐶) = 𝑃)
6564ad2antrr 713 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
6665fveq2d 6497 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
6758, 66eleqtrrd 2863 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
685eqcomi 2781 . . . . . . . . . . . . . . . 16 (𝑁 Mat 𝑃) = 𝐶
6968fveq2i 6496 . . . . . . . . . . . . . . 15 (0g‘(𝑁 Mat 𝑃)) = (0g𝐶)
7069oveq2i 6981 . . . . . . . . . . . . . 14 ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = ((𝑛 𝑋) (0g𝐶))
71 eqid 2772 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
72 eqid 2772 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
7371, 11, 72, 17lmodvs0 19380 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
7470, 73syl5eq 2820 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
7556, 67, 74syl2anc 576 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
7675adantr 473 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
7753, 76eqtrd 2808 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))
7877ex 405 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶)))
7978imim2d 57 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))))
8079ralimdva 3121 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))))
8180imp 398 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶)))
826, 17, 23, 44, 45, 81gsummptnn0fz 18846 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
8316, 82eqtrd 2808 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
8483ex 405 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
8584reximdva 3213 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
8610, 85mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082  wrex 3083   class class class wbr 4923  cmpt 5002  cfv 6182  (class class class)co 6970  Fincfn 8298  0cc0 10327   < clt 10466  0cn0 11700  ...cfz 12701  Basecbs 16329  Scalarcsca 16414   ·𝑠 cvsca 16415  0gc0g 16559   Σg cgsu 16560  .gcmg 18001  CMndccmn 18656  mulGrpcmgp 18952  Ringcrg 19010  CRingccrg 19011  LModclmod 19346  var1cv1 20037  Poly1cpl1 20038   Mat cmat 20710   matToPolyMat cmat2pmat 21006   decompPMat cdecpmat 21064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-sup 8693  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-fz 12702  df-fzo 12843  df-seq 13178  df-hash 13499  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-hom 16435  df-cco 16436  df-0g 16561  df-gsum 16562  df-prds 16567  df-pws 16569  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-mhm 17793  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-subg 18050  df-ghm 18117  df-cntz 18208  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-srg 18969  df-ring 19012  df-cring 19013  df-subrg 19246  df-lmod 19348  df-lss 19416  df-sra 19656  df-rgmod 19657  df-assa 19796  df-ascl 19798  df-psr 19840  df-mvr 19841  df-mpl 19842  df-opsr 19844  df-psr1 20041  df-vr1 20042  df-ply1 20043  df-coe1 20044  df-dsmm 20568  df-frlm 20583  df-mamu 20687  df-mat 20711  df-mat2pmat 21009  df-decpmat 21065
This theorem is referenced by:  pmatcollpw3fi  21087
  Copyright terms: Public domain W3C validator