Step | Hyp | Ref
| Expression |
1 | | hashscontpow1.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
2 | 1 | elfzelzd 13542 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℤ) |
3 | 2 | zred 12704 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | | hashscontpow1.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
5 | 4 | elfzelzd 13542 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
6 | 5 | zred 12704 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 3, 6 | resubcld 11680 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
8 | | hashscontpow1.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℕ) |
9 | | hashscontpow1.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
10 | 9 | nnzd 12623 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
11 | | hashscontpow1.5 |
. . . . . . 7
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
12 | | odzcl 16769 |
. . . . . . 7
⊢ ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
13 | 8, 10, 11, 12 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
14 | 13 | nnred 12265 |
. . . . 5
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈ ℝ) |
15 | | elfznn 13570 |
. . . . . . . 8
⊢ (𝐴 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝐴 ∈ ℕ) |
16 | 4, 15 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℕ) |
17 | 16 | nnrpd 13054 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
18 | 3, 17 | ltsubrpd 13088 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) < 𝐵) |
19 | | elfzle2 13545 |
. . . . . 6
⊢ (𝐵 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝐵 ≤ ((odℤ‘𝑅)‘𝑁)) |
20 | 1, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ≤ ((odℤ‘𝑅)‘𝑁)) |
21 | 7, 3, 14, 18, 20 | ltletrd 11412 |
. . . 4
⊢ (𝜑 → (𝐵 − 𝐴) < ((odℤ‘𝑅)‘𝑁)) |
22 | 21 | adantr 479 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) < ((odℤ‘𝑅)‘𝑁)) |
23 | | odzval 16767 |
. . . . . . 7
⊢ ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) →
((odℤ‘𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}, ℝ, <
)) |
24 | 8, 10, 11, 23 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}, ℝ, <
)) |
25 | 24 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) →
((odℤ‘𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}, ℝ, <
)) |
26 | | elrabi 3678 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} → 𝑗 ∈ ℕ) |
27 | 26 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) → 𝑗 ∈ ℕ) |
28 | 27 | nnred 12265 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) → 𝑗 ∈ ℝ) |
29 | 28 | ex 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} → 𝑗 ∈ ℝ)) |
30 | 29 | ssrdv 3988 |
. . . . . . 7
⊢ (𝜑 → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} ⊆
ℝ) |
31 | 30 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} ⊆
ℝ) |
32 | | 1red 11253 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
33 | | simpr 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 1) → 𝑥 = 1) |
34 | 33 | breq1d 5162 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 1) → (𝑥 ≤ 𝑦 ↔ 1 ≤ 𝑦)) |
35 | 34 | ralbidv 3175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 1) → (∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}1 ≤ 𝑦)) |
36 | | elrabi 3678 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} → 𝑦 ∈ ℕ) |
37 | 36 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) → 𝑦 ∈ ℕ) |
38 | 37 | nnge1d 12298 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) → 1 ≤ 𝑦) |
39 | 38 | ralrimiva 3143 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}1 ≤ 𝑦) |
40 | 32, 35, 39 | rspcedvd 3613 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}𝑥 ≤ 𝑦) |
41 | 40 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}𝑥 ≤ 𝑦) |
42 | | oveq2 7434 |
. . . . . . . . 9
⊢ (𝑖 = (𝐵 − 𝐴) → (𝑁↑𝑖) = (𝑁↑(𝐵 − 𝐴))) |
43 | 42 | oveq1d 7441 |
. . . . . . . 8
⊢ (𝑖 = (𝐵 − 𝐴) → ((𝑁↑𝑖) − 1) = ((𝑁↑(𝐵 − 𝐴)) − 1)) |
44 | 43 | breq2d 5164 |
. . . . . . 7
⊢ (𝑖 = (𝐵 − 𝐴) → (𝑅 ∥ ((𝑁↑𝑖) − 1) ↔ 𝑅 ∥ ((𝑁↑(𝐵 − 𝐴)) − 1))) |
45 | 2 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝐵 ∈ ℤ) |
46 | 5 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝐴 ∈ ℤ) |
47 | 45, 46 | zsubcld 12709 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) ∈ ℤ) |
48 | | hashscontpow1.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 < 𝐵) |
49 | 6, 3 | posdifd 11839 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
50 | 48, 49 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
51 | 50 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 0 < (𝐵 − 𝐴)) |
52 | 47, 51 | jca 510 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ((𝐵 − 𝐴) ∈ ℤ ∧ 0 < (𝐵 − 𝐴))) |
53 | | elnnz 12606 |
. . . . . . . 8
⊢ ((𝐵 − 𝐴) ∈ ℕ ↔ ((𝐵 − 𝐴) ∈ ℤ ∧ 0 < (𝐵 − 𝐴))) |
54 | 52, 53 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) ∈ ℕ) |
55 | 8 | nnzd 12623 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ ℤ) |
56 | 55 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑅 ∈ ℤ) |
57 | 10 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑁 ∈ ℤ) |
58 | 16 | nnnn0d 12570 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
59 | 58 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝐴 ∈
ℕ0) |
60 | 57, 59 | zexpcld 14092 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑁↑𝐴) ∈ ℤ) |
61 | 54 | nnnn0d 12570 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) ∈
ℕ0) |
62 | 57, 61 | zexpcld 14092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑁↑(𝐵 − 𝐴)) ∈ ℤ) |
63 | | 1zzd 12631 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 1 ∈
ℤ) |
64 | 62, 63 | zsubcld 12709 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ((𝑁↑(𝐵 − 𝐴)) − 1) ∈
ℤ) |
65 | 56, 60, 64 | 3jca 1125 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑅 ∈ ℤ ∧ (𝑁↑𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵 − 𝐴)) − 1) ∈
ℤ)) |
66 | | simpr 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) |
67 | 66 | eqcomd 2734 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐿‘(𝑁↑𝐵)) = (𝐿‘(𝑁↑𝐴))) |
68 | 8 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
69 | 68 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑅 ∈
ℕ0) |
70 | | elfznn 13570 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝐵 ∈ ℕ) |
71 | 1, 70 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℕ) |
72 | 71 | nnnn0d 12570 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
73 | 10, 72 | zexpcld 14092 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℤ) |
74 | 73 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑁↑𝐵) ∈ ℤ) |
75 | | hashscontpow1.7 |
. . . . . . . . . . . . 13
⊢ 𝑌 =
(ℤ/nℤ‘𝑅) |
76 | | hashscontpow1.6 |
. . . . . . . . . . . . 13
⊢ 𝐿 = (ℤRHom‘𝑌) |
77 | 75, 76 | zndvds 21490 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℕ0
∧ (𝑁↑𝐵) ∈ ℤ ∧ (𝑁↑𝐴) ∈ ℤ) → ((𝐿‘(𝑁↑𝐵)) = (𝐿‘(𝑁↑𝐴)) ↔ 𝑅 ∥ ((𝑁↑𝐵) − (𝑁↑𝐴)))) |
78 | 69, 74, 60, 77 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ((𝐿‘(𝑁↑𝐵)) = (𝐿‘(𝑁↑𝐴)) ↔ 𝑅 ∥ ((𝑁↑𝐵) − (𝑁↑𝐴)))) |
79 | 67, 78 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑅 ∥ ((𝑁↑𝐵) − (𝑁↑𝐴))) |
80 | 10, 58 | zexpcld 14092 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁↑𝐴) ∈ ℤ) |
81 | 80 | zcnd 12705 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑𝐴) ∈ ℂ) |
82 | 2, 5 | zsubcld 12709 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℤ) |
83 | | 0red 11255 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 ∈
ℝ) |
84 | 83, 7, 50 | ltled 11400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ≤ (𝐵 − 𝐴)) |
85 | 82, 84 | jca 510 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝐴) ∈ ℤ ∧ 0 ≤ (𝐵 − 𝐴))) |
86 | | elnn0z 12609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 − 𝐴) ∈ ℕ0 ↔ ((𝐵 − 𝐴) ∈ ℤ ∧ 0 ≤ (𝐵 − 𝐴))) |
87 | 85, 86 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝐴) ∈
ℕ0) |
88 | 10, 87 | zexpcld 14092 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁↑(𝐵 − 𝐴)) ∈ ℤ) |
89 | 88 | zcnd 12705 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑(𝐵 − 𝐴)) ∈ ℂ) |
90 | | 1cnd 11247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℂ) |
91 | 81, 89, 90 | subdid 11708 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1)) = (((𝑁↑𝐴) · (𝑁↑(𝐵 − 𝐴))) − ((𝑁↑𝐴) · 1))) |
92 | 6 | recnd 11280 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℂ) |
93 | 3 | recnd 11280 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℂ) |
94 | 92, 93 | pncan3d 11612 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
95 | 94 | eqcomd 2734 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 = (𝐴 + (𝐵 − 𝐴))) |
96 | 95 | oveq2d 7442 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁↑𝐵) = (𝑁↑(𝐴 + (𝐵 − 𝐴)))) |
97 | 9 | nncnd 12266 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
98 | 97, 87, 58 | expaddd 14152 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁↑(𝐴 + (𝐵 − 𝐴))) = ((𝑁↑𝐴) · (𝑁↑(𝐵 − 𝐴)))) |
99 | 96, 98 | eqtrd 2768 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁↑𝐵) = ((𝑁↑𝐴) · (𝑁↑(𝐵 − 𝐴)))) |
100 | 99 | eqcomd 2734 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑁↑𝐴) · (𝑁↑(𝐵 − 𝐴))) = (𝑁↑𝐵)) |
101 | 81 | mulridd 11269 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑁↑𝐴) · 1) = (𝑁↑𝐴)) |
102 | 100, 101 | oveq12d 7444 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑁↑𝐴) · (𝑁↑(𝐵 − 𝐴))) − ((𝑁↑𝐴) · 1)) = ((𝑁↑𝐵) − (𝑁↑𝐴))) |
103 | 91, 102 | eqtr2d 2769 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁↑𝐵) − (𝑁↑𝐴)) = ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1))) |
104 | 103 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ((𝑁↑𝐵) − (𝑁↑𝐴)) = ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1))) |
105 | 79, 104 | breqtrd 5178 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑅 ∥ ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1))) |
106 | 55, 80 | gcdcomd 16496 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 gcd (𝑁↑𝐴)) = ((𝑁↑𝐴) gcd 𝑅)) |
107 | | rpexp 16701 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (((𝑁↑𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1)) |
108 | 10, 55, 16, 107 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑁↑𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1)) |
109 | 11, 108 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁↑𝐴) gcd 𝑅) = 1) |
110 | 106, 109 | eqtrd 2768 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 gcd (𝑁↑𝐴)) = 1) |
111 | 110 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑅 gcd (𝑁↑𝐴)) = 1) |
112 | 105, 111 | jca 510 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝑅 ∥ ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1)) ∧ (𝑅 gcd (𝑁↑𝐴)) = 1)) |
113 | | coprmdvds 16631 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℤ ∧ (𝑁↑𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵 − 𝐴)) − 1) ∈ ℤ) → ((𝑅 ∥ ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1)) ∧ (𝑅 gcd (𝑁↑𝐴)) = 1) → 𝑅 ∥ ((𝑁↑(𝐵 − 𝐴)) − 1))) |
114 | 113 | imp 405 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℤ ∧ (𝑁↑𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵 − 𝐴)) − 1) ∈ ℤ) ∧ (𝑅 ∥ ((𝑁↑𝐴) · ((𝑁↑(𝐵 − 𝐴)) − 1)) ∧ (𝑅 gcd (𝑁↑𝐴)) = 1)) → 𝑅 ∥ ((𝑁↑(𝐵 − 𝐴)) − 1)) |
115 | 65, 112, 114 | syl2anc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → 𝑅 ∥ ((𝑁↑(𝐵 − 𝐴)) − 1)) |
116 | 44, 54, 115 | elrabd 3686 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) |
117 | | infrelb 12237 |
. . . . . 6
⊢ (({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)} ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}𝑥 ≤ 𝑦 ∧ (𝐵 − 𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}, ℝ, < ) ≤ (𝐵 − 𝐴)) |
118 | 31, 41, 116, 117 | syl3anc 1368 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁↑𝑖) − 1)}, ℝ, < ) ≤ (𝐵 − 𝐴)) |
119 | 25, 118 | eqbrtrd 5174 |
. . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) →
((odℤ‘𝑅)‘𝑁) ≤ (𝐵 − 𝐴)) |
120 | 13 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
121 | 120 | nnred 12265 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) →
((odℤ‘𝑅)‘𝑁) ∈ ℝ) |
122 | 7 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → (𝐵 − 𝐴) ∈ ℝ) |
123 | 121, 122 | lenltd 11398 |
. . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) →
(((odℤ‘𝑅)‘𝑁) ≤ (𝐵 − 𝐴) ↔ ¬ (𝐵 − 𝐴) < ((odℤ‘𝑅)‘𝑁))) |
124 | 119, 123 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) → ¬ (𝐵 − 𝐴) < ((odℤ‘𝑅)‘𝑁)) |
125 | 22, 124 | pm2.65da 815 |
. 2
⊢ (𝜑 → ¬ (𝐿‘(𝑁↑𝐴)) = (𝐿‘(𝑁↑𝐵))) |
126 | 125 | neqned 2944 |
1
⊢ (𝜑 → (𝐿‘(𝑁↑𝐴)) ≠ (𝐿‘(𝑁↑𝐵))) |