Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow1 Structured version   Visualization version   GIF version

Theorem hashscontpow1 42116
Description: Helper lemma for to prove inequality in Zr. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow1.1 (𝜑𝑁 ∈ ℕ)
hashscontpow1.2 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.3 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.4 (𝜑𝑅 ∈ ℕ)
hashscontpow1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow1.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow1.7 𝑌 = (ℤ/nℤ‘𝑅)
hashscontpow1.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
hashscontpow1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))

Proof of Theorem hashscontpow1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow1.3 . . . . . . . 8 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
21elfzelzd 13493 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
32zred 12645 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 hashscontpow1.2 . . . . . . . 8 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
54elfzelzd 13493 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
65zred 12645 . . . . . 6 (𝜑𝐴 ∈ ℝ)
73, 6resubcld 11613 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
8 hashscontpow1.4 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
9 hashscontpow1.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
109nnzd 12563 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
11 hashscontpow1.5 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
12 odzcl 16771 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
138, 10, 11, 12syl3anc 1373 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
1413nnred 12208 . . . . 5 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15 elfznn 13521 . . . . . . . 8 (𝐴 ∈ (1...((od𝑅)‘𝑁)) → 𝐴 ∈ ℕ)
164, 15syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
1716nnrpd 13000 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
183, 17ltsubrpd 13034 . . . . 5 (𝜑 → (𝐵𝐴) < 𝐵)
19 elfzle2 13496 . . . . . 6 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ≤ ((od𝑅)‘𝑁))
201, 19syl 17 . . . . 5 (𝜑𝐵 ≤ ((od𝑅)‘𝑁))
217, 3, 14, 18, 20ltletrd 11341 . . . 4 (𝜑 → (𝐵𝐴) < ((od𝑅)‘𝑁))
2221adantr 480 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) < ((od𝑅)‘𝑁))
23 odzval 16769 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
248, 10, 11, 23syl3anc 1373 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
26 elrabi 3657 . . . . . . . . . . 11 (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℕ)
2827nnred 12208 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℝ)
2928ex 412 . . . . . . . 8 (𝜑 → (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℝ))
3029ssrdv 3955 . . . . . . 7 (𝜑 → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
32 1red 11182 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 = 1) → 𝑥 = 1)
3433breq1d 5120 . . . . . . . . 9 ((𝜑𝑥 = 1) → (𝑥𝑦 ↔ 1 ≤ 𝑦))
3534ralbidv 3157 . . . . . . . 8 ((𝜑𝑥 = 1) → (∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦))
36 elrabi 3657 . . . . . . . . . . 11 (𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑦 ∈ ℕ)
3837nnge1d 12241 . . . . . . . . 9 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 1 ≤ 𝑦)
3938ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦)
4032, 35, 39rspcedvd 3593 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
4140adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
42 oveq2 7398 . . . . . . . . 9 (𝑖 = (𝐵𝐴) → (𝑁𝑖) = (𝑁↑(𝐵𝐴)))
4342oveq1d 7405 . . . . . . . 8 (𝑖 = (𝐵𝐴) → ((𝑁𝑖) − 1) = ((𝑁↑(𝐵𝐴)) − 1))
4443breq2d 5122 . . . . . . 7 (𝑖 = (𝐵𝐴) → (𝑅 ∥ ((𝑁𝑖) − 1) ↔ 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
452adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐵 ∈ ℤ)
465adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℤ)
4745, 46zsubcld 12650 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℤ)
48 hashscontpow1.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
496, 3posdifd 11772 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5048, 49mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
5150adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 0 < (𝐵𝐴))
5247, 51jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
53 elnnz 12546 . . . . . . . 8 ((𝐵𝐴) ∈ ℕ ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
5452, 53sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ)
558nnzd 12563 . . . . . . . . . 10 (𝜑𝑅 ∈ ℤ)
5655adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℤ)
5710adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑁 ∈ ℤ)
5816nnnn0d 12510 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ0)
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℕ0)
6057, 59zexpcld 14059 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐴) ∈ ℤ)
6154nnnn0d 12510 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ0)
6257, 61zexpcld 14059 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁↑(𝐵𝐴)) ∈ ℤ)
63 1zzd 12571 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 1 ∈ ℤ)
6462, 63zsubcld 12650 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ)
6556, 60, 643jca 1128 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ))
66 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
6766eqcomd 2736 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)))
688nnnn0d 12510 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
6968adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℕ0)
70 elfznn 13521 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ∈ ℕ)
711, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ)
7271nnnn0d 12510 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℕ0)
7310, 72zexpcld 14059 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐵) ∈ ℤ)
7473adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐵) ∈ ℤ)
75 hashscontpow1.7 . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑅)
76 hashscontpow1.6 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑌)
7775, 76zndvds 21466 . . . . . . . . . . . 12 ((𝑅 ∈ ℕ0 ∧ (𝑁𝐵) ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7869, 74, 60, 77syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7967, 78mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴)))
8010, 58zexpcld 14059 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐴) ∈ ℤ)
8180zcnd 12646 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐴) ∈ ℂ)
822, 5zsubcld 12650 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℤ)
83 0red 11184 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℝ)
8483, 7, 50ltled 11329 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝐵𝐴))
8582, 84jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
86 elnn0z 12549 . . . . . . . . . . . . . . . 16 ((𝐵𝐴) ∈ ℕ0 ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
8785, 86sylibr 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐴) ∈ ℕ0)
8810, 87zexpcld 14059 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℤ)
8988zcnd 12646 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℂ)
90 1cnd 11176 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
9181, 89, 90subdid 11641 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) = (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)))
926recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
933recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9492, 93pncan3d 11543 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
9594eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
9695oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝐵) = (𝑁↑(𝐴 + (𝐵𝐴))))
979nncnd 12209 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
9897, 87, 58expaddd 14120 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁↑(𝐴 + (𝐵𝐴))) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
9996, 98eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐵) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
10099eqcomd 2736 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · (𝑁↑(𝐵𝐴))) = (𝑁𝐵))
10181mulridd 11198 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · 1) = (𝑁𝐴))
102100, 101oveq12d 7408 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)) = ((𝑁𝐵) − (𝑁𝐴)))
10391, 102eqtr2d 2766 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
104103adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10579, 104breqtrd 5136 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10655, 80gcdcomd 16491 . . . . . . . . . . 11 (𝜑 → (𝑅 gcd (𝑁𝐴)) = ((𝑁𝐴) gcd 𝑅))
107 rpexp 16699 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10810, 55, 16, 107syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10911, 108mpbird 257 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) gcd 𝑅) = 1)
110106, 109eqtrd 2765 . . . . . . . . . 10 (𝜑 → (𝑅 gcd (𝑁𝐴)) = 1)
111110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 gcd (𝑁𝐴)) = 1)
112105, 111jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1))
113 coprmdvds 16630 . . . . . . . . 9 ((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) → ((𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
114113imp 406 . . . . . . . 8 (((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) ∧ (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1)) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11565, 112, 114syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11644, 54, 115elrabd 3664 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)})
117 infrelb 12175 . . . . . 6 (({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ∧ (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11831, 41, 116, 117syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11925, 118eqbrtrd 5132 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ≤ (𝐵𝐴))
12013adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℕ)
121120nnred 12208 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℝ)
1227adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℝ)
123121, 122lenltd 11327 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (((od𝑅)‘𝑁) ≤ (𝐵𝐴) ↔ ¬ (𝐵𝐴) < ((od𝑅)‘𝑁)))
124119, 123mpbid 232 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ¬ (𝐵𝐴) < ((od𝑅)‘𝑁))
12522, 124pm2.65da 816 . 2 (𝜑 → ¬ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
126125neqned 2933 1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  cexp 14033  cdvds 16229   gcd cgcd 16471  odcodz 16740  ℤRHomczrh 21416  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423
This theorem is referenced by:  hashscontpow  42117
  Copyright terms: Public domain W3C validator