Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow1 Structured version   Visualization version   GIF version

Theorem hashscontpow1 42102
Description: Helper lemma for to prove inequality in Zr. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow1.1 (𝜑𝑁 ∈ ℕ)
hashscontpow1.2 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.3 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.4 (𝜑𝑅 ∈ ℕ)
hashscontpow1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow1.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow1.7 𝑌 = (ℤ/nℤ‘𝑅)
hashscontpow1.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
hashscontpow1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))

Proof of Theorem hashscontpow1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow1.3 . . . . . . . 8 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
21elfzelzd 13561 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
32zred 12719 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 hashscontpow1.2 . . . . . . . 8 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
54elfzelzd 13561 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
65zred 12719 . . . . . 6 (𝜑𝐴 ∈ ℝ)
73, 6resubcld 11688 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
8 hashscontpow1.4 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
9 hashscontpow1.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
109nnzd 12637 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
11 hashscontpow1.5 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
12 odzcl 16826 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
138, 10, 11, 12syl3anc 1370 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
1413nnred 12278 . . . . 5 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15 elfznn 13589 . . . . . . . 8 (𝐴 ∈ (1...((od𝑅)‘𝑁)) → 𝐴 ∈ ℕ)
164, 15syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
1716nnrpd 13072 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
183, 17ltsubrpd 13106 . . . . 5 (𝜑 → (𝐵𝐴) < 𝐵)
19 elfzle2 13564 . . . . . 6 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ≤ ((od𝑅)‘𝑁))
201, 19syl 17 . . . . 5 (𝜑𝐵 ≤ ((od𝑅)‘𝑁))
217, 3, 14, 18, 20ltletrd 11418 . . . 4 (𝜑 → (𝐵𝐴) < ((od𝑅)‘𝑁))
2221adantr 480 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) < ((od𝑅)‘𝑁))
23 odzval 16824 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
248, 10, 11, 23syl3anc 1370 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
26 elrabi 3689 . . . . . . . . . . 11 (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℕ)
2827nnred 12278 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℝ)
2928ex 412 . . . . . . . 8 (𝜑 → (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℝ))
3029ssrdv 4000 . . . . . . 7 (𝜑 → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
32 1red 11259 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 = 1) → 𝑥 = 1)
3433breq1d 5157 . . . . . . . . 9 ((𝜑𝑥 = 1) → (𝑥𝑦 ↔ 1 ≤ 𝑦))
3534ralbidv 3175 . . . . . . . 8 ((𝜑𝑥 = 1) → (∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦))
36 elrabi 3689 . . . . . . . . . . 11 (𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑦 ∈ ℕ)
3837nnge1d 12311 . . . . . . . . 9 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 1 ≤ 𝑦)
3938ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦)
4032, 35, 39rspcedvd 3623 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
4140adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
42 oveq2 7438 . . . . . . . . 9 (𝑖 = (𝐵𝐴) → (𝑁𝑖) = (𝑁↑(𝐵𝐴)))
4342oveq1d 7445 . . . . . . . 8 (𝑖 = (𝐵𝐴) → ((𝑁𝑖) − 1) = ((𝑁↑(𝐵𝐴)) − 1))
4443breq2d 5159 . . . . . . 7 (𝑖 = (𝐵𝐴) → (𝑅 ∥ ((𝑁𝑖) − 1) ↔ 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
452adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐵 ∈ ℤ)
465adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℤ)
4745, 46zsubcld 12724 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℤ)
48 hashscontpow1.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
496, 3posdifd 11847 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5048, 49mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
5150adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 0 < (𝐵𝐴))
5247, 51jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
53 elnnz 12620 . . . . . . . 8 ((𝐵𝐴) ∈ ℕ ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
5452, 53sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ)
558nnzd 12637 . . . . . . . . . 10 (𝜑𝑅 ∈ ℤ)
5655adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℤ)
5710adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑁 ∈ ℤ)
5816nnnn0d 12584 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ0)
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℕ0)
6057, 59zexpcld 14124 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐴) ∈ ℤ)
6154nnnn0d 12584 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ0)
6257, 61zexpcld 14124 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁↑(𝐵𝐴)) ∈ ℤ)
63 1zzd 12645 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 1 ∈ ℤ)
6462, 63zsubcld 12724 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ)
6556, 60, 643jca 1127 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ))
66 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
6766eqcomd 2740 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)))
688nnnn0d 12584 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
6968adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℕ0)
70 elfznn 13589 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ∈ ℕ)
711, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ)
7271nnnn0d 12584 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℕ0)
7310, 72zexpcld 14124 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐵) ∈ ℤ)
7473adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐵) ∈ ℤ)
75 hashscontpow1.7 . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑅)
76 hashscontpow1.6 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑌)
7775, 76zndvds 21585 . . . . . . . . . . . 12 ((𝑅 ∈ ℕ0 ∧ (𝑁𝐵) ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7869, 74, 60, 77syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7967, 78mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴)))
8010, 58zexpcld 14124 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐴) ∈ ℤ)
8180zcnd 12720 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐴) ∈ ℂ)
822, 5zsubcld 12724 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℤ)
83 0red 11261 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℝ)
8483, 7, 50ltled 11406 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝐵𝐴))
8582, 84jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
86 elnn0z 12623 . . . . . . . . . . . . . . . 16 ((𝐵𝐴) ∈ ℕ0 ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
8785, 86sylibr 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐴) ∈ ℕ0)
8810, 87zexpcld 14124 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℤ)
8988zcnd 12720 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℂ)
90 1cnd 11253 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
9181, 89, 90subdid 11716 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) = (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)))
926recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
933recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9492, 93pncan3d 11620 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
9594eqcomd 2740 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
9695oveq2d 7446 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝐵) = (𝑁↑(𝐴 + (𝐵𝐴))))
979nncnd 12279 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
9897, 87, 58expaddd 14184 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁↑(𝐴 + (𝐵𝐴))) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
9996, 98eqtrd 2774 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐵) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
10099eqcomd 2740 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · (𝑁↑(𝐵𝐴))) = (𝑁𝐵))
10181mulridd 11275 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · 1) = (𝑁𝐴))
102100, 101oveq12d 7448 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)) = ((𝑁𝐵) − (𝑁𝐴)))
10391, 102eqtr2d 2775 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
104103adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10579, 104breqtrd 5173 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10655, 80gcdcomd 16547 . . . . . . . . . . 11 (𝜑 → (𝑅 gcd (𝑁𝐴)) = ((𝑁𝐴) gcd 𝑅))
107 rpexp 16755 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10810, 55, 16, 107syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10911, 108mpbird 257 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) gcd 𝑅) = 1)
110106, 109eqtrd 2774 . . . . . . . . . 10 (𝜑 → (𝑅 gcd (𝑁𝐴)) = 1)
111110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 gcd (𝑁𝐴)) = 1)
112105, 111jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1))
113 coprmdvds 16686 . . . . . . . . 9 ((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) → ((𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
114113imp 406 . . . . . . . 8 (((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) ∧ (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1)) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11565, 112, 114syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11644, 54, 115elrabd 3696 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)})
117 infrelb 12250 . . . . . 6 (({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ∧ (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11831, 41, 116, 117syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11925, 118eqbrtrd 5169 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ≤ (𝐵𝐴))
12013adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℕ)
121120nnred 12278 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℝ)
1227adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℝ)
123121, 122lenltd 11404 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (((od𝑅)‘𝑁) ≤ (𝐵𝐴) ↔ ¬ (𝐵𝐴) < ((od𝑅)‘𝑁)))
124119, 123mpbid 232 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ¬ (𝐵𝐴) < ((od𝑅)‘𝑁))
12522, 124pm2.65da 817 . 2 (𝜑 → ¬ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
126125neqned 2944 1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  infcinf 9478  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  cn 12263  0cn0 12523  cz 12610  ...cfz 13543  cexp 14098  cdvds 16286   gcd cgcd 16527  odcodz 16796  ℤRHomczrh 21527  ℤ/nczn 21530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705  df-odz 16798  df-phi 16799  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-nsg 19154  df-eqg 19155  df-ghm 19243  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-2idl 21277  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-zn 21534
This theorem is referenced by:  hashscontpow  42103
  Copyright terms: Public domain W3C validator