Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow1 Structured version   Visualization version   GIF version

Theorem hashscontpow1 42102
Description: Helper lemma for to prove inequality in Zr. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow1.1 (𝜑𝑁 ∈ ℕ)
hashscontpow1.2 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.3 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
hashscontpow1.4 (𝜑𝑅 ∈ ℕ)
hashscontpow1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow1.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow1.7 𝑌 = (ℤ/nℤ‘𝑅)
hashscontpow1.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
hashscontpow1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))

Proof of Theorem hashscontpow1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow1.3 . . . . . . . 8 (𝜑𝐵 ∈ (1...((od𝑅)‘𝑁)))
21elfzelzd 13462 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
32zred 12614 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 hashscontpow1.2 . . . . . . . 8 (𝜑𝐴 ∈ (1...((od𝑅)‘𝑁)))
54elfzelzd 13462 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
65zred 12614 . . . . . 6 (𝜑𝐴 ∈ ℝ)
73, 6resubcld 11582 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
8 hashscontpow1.4 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
9 hashscontpow1.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
109nnzd 12532 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
11 hashscontpow1.5 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
12 odzcl 16740 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
138, 10, 11, 12syl3anc 1373 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
1413nnred 12177 . . . . 5 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15 elfznn 13490 . . . . . . . 8 (𝐴 ∈ (1...((od𝑅)‘𝑁)) → 𝐴 ∈ ℕ)
164, 15syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
1716nnrpd 12969 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
183, 17ltsubrpd 13003 . . . . 5 (𝜑 → (𝐵𝐴) < 𝐵)
19 elfzle2 13465 . . . . . 6 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ≤ ((od𝑅)‘𝑁))
201, 19syl 17 . . . . 5 (𝜑𝐵 ≤ ((od𝑅)‘𝑁))
217, 3, 14, 18, 20ltletrd 11310 . . . 4 (𝜑 → (𝐵𝐴) < ((od𝑅)‘𝑁))
2221adantr 480 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) < ((od𝑅)‘𝑁))
23 odzval 16738 . . . . . . 7 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
248, 10, 11, 23syl3anc 1373 . . . . . 6 (𝜑 → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) = inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ))
26 elrabi 3651 . . . . . . . . . . 11 (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℕ)
2827nnred 12177 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑗 ∈ ℝ)
2928ex 412 . . . . . . . 8 (𝜑 → (𝑗 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑗 ∈ ℝ))
3029ssrdv 3949 . . . . . . 7 (𝜑 → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ)
32 1red 11151 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 = 1) → 𝑥 = 1)
3433breq1d 5112 . . . . . . . . 9 ((𝜑𝑥 = 1) → (𝑥𝑦 ↔ 1 ≤ 𝑦))
3534ralbidv 3156 . . . . . . . 8 ((𝜑𝑥 = 1) → (∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦))
36 elrabi 3651 . . . . . . . . . . 11 (𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 𝑦 ∈ ℕ)
3837nnge1d 12210 . . . . . . . . 9 ((𝜑𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → 1 ≤ 𝑦)
3938ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}1 ≤ 𝑦)
4032, 35, 39rspcedvd 3587 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
4140adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦)
42 oveq2 7377 . . . . . . . . 9 (𝑖 = (𝐵𝐴) → (𝑁𝑖) = (𝑁↑(𝐵𝐴)))
4342oveq1d 7384 . . . . . . . 8 (𝑖 = (𝐵𝐴) → ((𝑁𝑖) − 1) = ((𝑁↑(𝐵𝐴)) − 1))
4443breq2d 5114 . . . . . . 7 (𝑖 = (𝐵𝐴) → (𝑅 ∥ ((𝑁𝑖) − 1) ↔ 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
452adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐵 ∈ ℤ)
465adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℤ)
4745, 46zsubcld 12619 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℤ)
48 hashscontpow1.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
496, 3posdifd 11741 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5048, 49mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
5150adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 0 < (𝐵𝐴))
5247, 51jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
53 elnnz 12515 . . . . . . . 8 ((𝐵𝐴) ∈ ℕ ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 < (𝐵𝐴)))
5452, 53sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ)
558nnzd 12532 . . . . . . . . . 10 (𝜑𝑅 ∈ ℤ)
5655adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℤ)
5710adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑁 ∈ ℤ)
5816nnnn0d 12479 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ0)
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝐴 ∈ ℕ0)
6057, 59zexpcld 14028 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐴) ∈ ℤ)
6154nnnn0d 12479 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℕ0)
6257, 61zexpcld 14028 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁↑(𝐵𝐴)) ∈ ℤ)
63 1zzd 12540 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 1 ∈ ℤ)
6462, 63zsubcld 12619 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ)
6556, 60, 643jca 1128 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ))
66 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
6766eqcomd 2735 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)))
688nnnn0d 12479 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
6968adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∈ ℕ0)
70 elfznn 13490 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...((od𝑅)‘𝑁)) → 𝐵 ∈ ℕ)
711, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ)
7271nnnn0d 12479 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℕ0)
7310, 72zexpcld 14028 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐵) ∈ ℤ)
7473adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑁𝐵) ∈ ℤ)
75 hashscontpow1.7 . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑅)
76 hashscontpow1.6 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑌)
7775, 76zndvds 21491 . . . . . . . . . . . 12 ((𝑅 ∈ ℕ0 ∧ (𝑁𝐵) ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7869, 74, 60, 77syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝐿‘(𝑁𝐵)) = (𝐿‘(𝑁𝐴)) ↔ 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴))))
7967, 78mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐵) − (𝑁𝐴)))
8010, 58zexpcld 14028 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐴) ∈ ℤ)
8180zcnd 12615 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐴) ∈ ℂ)
822, 5zsubcld 12619 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℤ)
83 0red 11153 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℝ)
8483, 7, 50ltled 11298 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝐵𝐴))
8582, 84jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
86 elnn0z 12518 . . . . . . . . . . . . . . . 16 ((𝐵𝐴) ∈ ℕ0 ↔ ((𝐵𝐴) ∈ ℤ ∧ 0 ≤ (𝐵𝐴)))
8785, 86sylibr 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐴) ∈ ℕ0)
8810, 87zexpcld 14028 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℤ)
8988zcnd 12615 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(𝐵𝐴)) ∈ ℂ)
90 1cnd 11145 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
9181, 89, 90subdid 11610 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) = (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)))
926recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
933recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9492, 93pncan3d 11512 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
9594eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
9695oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝐵) = (𝑁↑(𝐴 + (𝐵𝐴))))
979nncnd 12178 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
9897, 87, 58expaddd 14089 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁↑(𝐴 + (𝐵𝐴))) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
9996, 98eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝐵) = ((𝑁𝐴) · (𝑁↑(𝐵𝐴))))
10099eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · (𝑁↑(𝐵𝐴))) = (𝑁𝐵))
10181mulridd 11167 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝐴) · 1) = (𝑁𝐴))
102100, 101oveq12d 7387 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) · (𝑁↑(𝐵𝐴))) − ((𝑁𝐴) · 1)) = ((𝑁𝐵) − (𝑁𝐴)))
10391, 102eqtr2d 2765 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
104103adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((𝑁𝐵) − (𝑁𝐴)) = ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10579, 104breqtrd 5128 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)))
10655, 80gcdcomd 16460 . . . . . . . . . . 11 (𝜑 → (𝑅 gcd (𝑁𝐴)) = ((𝑁𝐴) gcd 𝑅))
107 rpexp 16668 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10810, 55, 16, 107syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝐴) gcd 𝑅) = 1 ↔ (𝑁 gcd 𝑅) = 1))
10911, 108mpbird 257 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) gcd 𝑅) = 1)
110106, 109eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝑅 gcd (𝑁𝐴)) = 1)
111110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 gcd (𝑁𝐴)) = 1)
112105, 111jca 511 . . . . . . . 8 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1))
113 coprmdvds 16599 . . . . . . . . 9 ((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) → ((𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1)))
114113imp 406 . . . . . . . 8 (((𝑅 ∈ ℤ ∧ (𝑁𝐴) ∈ ℤ ∧ ((𝑁↑(𝐵𝐴)) − 1) ∈ ℤ) ∧ (𝑅 ∥ ((𝑁𝐴) · ((𝑁↑(𝐵𝐴)) − 1)) ∧ (𝑅 gcd (𝑁𝐴)) = 1)) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11565, 112, 114syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → 𝑅 ∥ ((𝑁↑(𝐵𝐴)) − 1))
11644, 54, 115elrabd 3658 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)})
117 infrelb 12144 . . . . . 6 (({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}𝑥𝑦 ∧ (𝐵𝐴) ∈ {𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11831, 41, 116, 117syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → inf({𝑖 ∈ ℕ ∣ 𝑅 ∥ ((𝑁𝑖) − 1)}, ℝ, < ) ≤ (𝐵𝐴))
11925, 118eqbrtrd 5124 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ≤ (𝐵𝐴))
12013adantr 480 . . . . . 6 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℕ)
121120nnred 12177 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ((od𝑅)‘𝑁) ∈ ℝ)
1227adantr 480 . . . . 5 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (𝐵𝐴) ∈ ℝ)
123121, 122lenltd 11296 . . . 4 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → (((od𝑅)‘𝑁) ≤ (𝐵𝐴) ↔ ¬ (𝐵𝐴) < ((od𝑅)‘𝑁)))
124119, 123mpbid 232 . . 3 ((𝜑 ∧ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵))) → ¬ (𝐵𝐴) < ((od𝑅)‘𝑁))
12522, 124pm2.65da 816 . 2 (𝜑 → ¬ (𝐿‘(𝑁𝐴)) = (𝐿‘(𝑁𝐵)))
126125neqned 2932 1 (𝜑 → (𝐿‘(𝑁𝐴)) ≠ (𝐿‘(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  infcinf 9368  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cexp 14002  cdvds 16198   gcd cgcd 16440  odcodz 16709  ℤRHomczrh 21441  ℤ/nczn 21444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-odz 16711  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448
This theorem is referenced by:  hashscontpow  42103
  Copyright terms: Public domain W3C validator