| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modmknepk | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| modmknepk.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| modmknepk.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modmknepk | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz3nn 12793 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13566 | . . . 4 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 4 | modmknepk.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 5 | 3, 4 | eleq2s 2851 | . . 3 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑌 ∈ ℤ) |
| 7 | elfzoelz 13566 | . . . 4 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 8 | modmknepk.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 9 | 7, 8 | eleq2s 2851 | . . 3 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 11 | 9 | zcnd 12588 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℂ) |
| 12 | 11 | 2timesd 12375 | . . . . . 6 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 13 | 12 | eqcomd 2739 | . . . . 5 ⊢ (𝐾 ∈ 𝐽 → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 15 | 1red 11124 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ∈ ℝ) | |
| 16 | 9 | zred 12587 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ) |
| 17 | 2z 12514 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 2 ∈ ℤ) |
| 19 | 18, 9 | zmulcld 12593 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℤ) |
| 20 | 19 | zred 12587 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℝ) |
| 21 | elfzole1 13574 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 22 | 21, 8 | eleq2s 2851 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ 𝐾) |
| 23 | elfzo1 13619 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 24 | 23 | simp1bi 1145 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 25 | 24, 8 | eleq2s 2851 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ) |
| 26 | 25 | nnnn0d 12453 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ0) |
| 27 | nn0le2x 12446 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ≤ (2 · 𝐾)) |
| 29 | 15, 16, 20, 22, 28 | letrd 11281 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ (2 · 𝐾)) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 1 ≤ (2 · 𝐾)) |
| 31 | 8 | eleq2i 2825 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 32 | 2tceilhalfelfzo1 47494 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 33 | 31, 32 | sylan2b 594 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (2 · 𝐾) < 𝑁) |
| 34 | 30, 33 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 35 | breq2 5099 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 36 | breq1 5098 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 37 | 35, 36 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 38 | 34, 37 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 39 | 14, 38 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 40 | 39 | 3adant2 1131 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 41 | submodneaddmod 47513 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 + 𝐾) mod 𝑁) ≠ ((𝑌 − 𝐾) mod 𝑁)) | |
| 42 | 41 | necomd 2984 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| 43 | 2, 6, 10, 10, 40, 42 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 − cmin 11355 / cdiv 11785 ℕcn 12136 2c2 12191 3c3 12192 ℕ0cn0 12392 ℤcz 12479 ℤ≥cuz 12742 ..^cfzo 13561 ⌈cceil 13702 mod cmo 13780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-ceil 13704 df-mod 13781 df-dvds 16171 |
| This theorem is referenced by: modm1nep1 47527 gpgedg2iv 48229 gpg3nbgrvtx0ALT 48239 gpg3nbgrvtx1 48240 |
| Copyright terms: Public domain | W3C validator |