| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modmknepk | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| modmknepk.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| modmknepk.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modmknepk | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz3nn 12854 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13626 | . . . 4 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 4 | modmknepk.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 5 | 3, 4 | eleq2s 2847 | . . 3 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑌 ∈ ℤ) |
| 7 | elfzoelz 13626 | . . . 4 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 8 | modmknepk.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 9 | 7, 8 | eleq2s 2847 | . . 3 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 11 | 9 | zcnd 12645 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℂ) |
| 12 | 11 | 2timesd 12431 | . . . . . 6 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 13 | 12 | eqcomd 2736 | . . . . 5 ⊢ (𝐾 ∈ 𝐽 → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 15 | 1red 11181 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ∈ ℝ) | |
| 16 | 9 | zred 12644 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ) |
| 17 | 2z 12571 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 2 ∈ ℤ) |
| 19 | 18, 9 | zmulcld 12650 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℤ) |
| 20 | 19 | zred 12644 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℝ) |
| 21 | elfzole1 13634 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 22 | 21, 8 | eleq2s 2847 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ 𝐾) |
| 23 | elfzo1 13679 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 24 | 23 | simp1bi 1145 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 25 | 24, 8 | eleq2s 2847 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ) |
| 26 | 25 | nnnn0d 12509 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ0) |
| 27 | nn0le2x 12502 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ≤ (2 · 𝐾)) |
| 29 | 15, 16, 20, 22, 28 | letrd 11337 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ (2 · 𝐾)) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 1 ≤ (2 · 𝐾)) |
| 31 | 8 | eleq2i 2821 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 32 | 2tceilhalfelfzo1 47323 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 33 | 31, 32 | sylan2b 594 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (2 · 𝐾) < 𝑁) |
| 34 | 30, 33 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 35 | breq2 5113 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 36 | breq1 5112 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 37 | 35, 36 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 38 | 34, 37 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 39 | 14, 38 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 40 | 39 | 3adant2 1131 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 41 | submodneaddmod 47342 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 + 𝐾) mod 𝑁) ≠ ((𝑌 − 𝐾) mod 𝑁)) | |
| 42 | 41 | necomd 2981 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| 43 | 2, 6, 10, 10, 40, 42 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 < clt 11214 ≤ cle 11215 − cmin 11411 / cdiv 11841 ℕcn 12187 2c2 12242 3c3 12243 ℕ0cn0 12448 ℤcz 12535 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 mod cmo 13837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-ceil 13761 df-mod 13838 df-dvds 16229 |
| This theorem is referenced by: modm1nep1 47356 gpgedg2iv 48048 gpg3nbgrvtx0ALT 48058 gpg3nbgrvtx1 48059 |
| Copyright terms: Public domain | W3C validator |