| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modmknepk | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| modmknepk.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| modmknepk.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modmknepk | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz3nn 12824 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13596 | . . . 4 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 4 | modmknepk.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 5 | 3, 4 | eleq2s 2846 | . . 3 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑌 ∈ ℤ) |
| 7 | elfzoelz 13596 | . . . 4 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 8 | modmknepk.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 9 | 7, 8 | eleq2s 2846 | . . 3 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 11 | 9 | zcnd 12615 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℂ) |
| 12 | 11 | 2timesd 12401 | . . . . . 6 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 13 | 12 | eqcomd 2735 | . . . . 5 ⊢ (𝐾 ∈ 𝐽 → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 15 | 1red 11151 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ∈ ℝ) | |
| 16 | 9 | zred 12614 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ) |
| 17 | 2z 12541 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 2 ∈ ℤ) |
| 19 | 18, 9 | zmulcld 12620 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℤ) |
| 20 | 19 | zred 12614 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℝ) |
| 21 | elfzole1 13604 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 22 | 21, 8 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ 𝐾) |
| 23 | elfzo1 13649 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 24 | 23 | simp1bi 1145 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 25 | 24, 8 | eleq2s 2846 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ) |
| 26 | 25 | nnnn0d 12479 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ0) |
| 27 | nn0le2x 12472 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ≤ (2 · 𝐾)) |
| 29 | 15, 16, 20, 22, 28 | letrd 11307 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ (2 · 𝐾)) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 1 ≤ (2 · 𝐾)) |
| 31 | 8 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 32 | 2tceilhalfelfzo1 47306 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 33 | 31, 32 | sylan2b 594 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (2 · 𝐾) < 𝑁) |
| 34 | 30, 33 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 35 | breq2 5106 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 36 | breq1 5105 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 37 | 35, 36 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 38 | 34, 37 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 39 | 14, 38 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 40 | 39 | 3adant2 1131 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 41 | submodneaddmod 47325 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 + 𝐾) mod 𝑁) ≠ ((𝑌 − 𝐾) mod 𝑁)) | |
| 42 | 41 | necomd 2980 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| 43 | 2, 6, 10, 10, 40, 42 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 ..^cfzo 13591 ⌈cceil 13729 mod cmo 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-ceil 13731 df-mod 13808 df-dvds 16199 |
| This theorem is referenced by: modm1nep1 47339 gpgedg2iv 48031 gpg3nbgrvtx0ALT 48041 gpg3nbgrvtx1 48042 |
| Copyright terms: Public domain | W3C validator |