| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modmknepk | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| modmknepk.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| modmknepk.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modmknepk | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz3nn 12782 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13554 | . . . 4 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 4 | modmknepk.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 5 | 3, 4 | eleq2s 2849 | . . 3 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑌 ∈ ℤ) |
| 7 | elfzoelz 13554 | . . . 4 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 8 | modmknepk.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 9 | 7, 8 | eleq2s 2849 | . . 3 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 11 | 9 | zcnd 12573 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℂ) |
| 12 | 11 | 2timesd 12359 | . . . . . 6 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 13 | 12 | eqcomd 2737 | . . . . 5 ⊢ (𝐾 ∈ 𝐽 → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 15 | 1red 11108 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ∈ ℝ) | |
| 16 | 9 | zred 12572 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ) |
| 17 | 2z 12499 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 2 ∈ ℤ) |
| 19 | 18, 9 | zmulcld 12578 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℤ) |
| 20 | 19 | zred 12572 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℝ) |
| 21 | elfzole1 13562 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 22 | 21, 8 | eleq2s 2849 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ 𝐾) |
| 23 | elfzo1 13607 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 24 | 23 | simp1bi 1145 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 25 | 24, 8 | eleq2s 2849 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ) |
| 26 | 25 | nnnn0d 12437 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ0) |
| 27 | nn0le2x 12430 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ≤ (2 · 𝐾)) |
| 29 | 15, 16, 20, 22, 28 | letrd 11265 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ (2 · 𝐾)) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 1 ≤ (2 · 𝐾)) |
| 31 | 8 | eleq2i 2823 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 32 | 2tceilhalfelfzo1 47363 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 33 | 31, 32 | sylan2b 594 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (2 · 𝐾) < 𝑁) |
| 34 | 30, 33 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 35 | breq2 5090 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 36 | breq1 5089 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 37 | 35, 36 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 38 | 34, 37 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 39 | 14, 38 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 40 | 39 | 3adant2 1131 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 41 | submodneaddmod 47382 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 + 𝐾) mod 𝑁) ≠ ((𝑌 − 𝐾) mod 𝑁)) | |
| 42 | 41 | necomd 2983 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| 43 | 2, 6, 10, 10, 40, 42 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 − cmin 11339 / cdiv 11769 ℕcn 12120 2c2 12175 3c3 12176 ℕ0cn0 12376 ℤcz 12463 ℤ≥cuz 12727 ..^cfzo 13549 ⌈cceil 13690 mod cmo 13768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-ceil 13692 df-mod 13769 df-dvds 16159 |
| This theorem is referenced by: modm1nep1 47396 gpgedg2iv 48098 gpg3nbgrvtx0ALT 48108 gpg3nbgrvtx1 48109 |
| Copyright terms: Public domain | W3C validator |