| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modmknepk | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| modmknepk.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| modmknepk.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modmknepk | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz3nn 12809 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13581 | . . . 4 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 4 | modmknepk.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 5 | 3, 4 | eleq2s 2846 | . . 3 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝑌 ∈ ℤ) |
| 7 | elfzoelz 13581 | . . . 4 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 8 | modmknepk.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 9 | 7, 8 | eleq2s 2846 | . . 3 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 11 | 9 | zcnd 12600 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℂ) |
| 12 | 11 | 2timesd 12386 | . . . . . 6 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 13 | 12 | eqcomd 2735 | . . . . 5 ⊢ (𝐾 ∈ 𝐽 → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 15 | 1red 11135 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ∈ ℝ) | |
| 16 | 9 | zred 12599 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ) |
| 17 | 2z 12526 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 2 ∈ ℤ) |
| 19 | 18, 9 | zmulcld 12605 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℤ) |
| 20 | 19 | zred 12599 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → (2 · 𝐾) ∈ ℝ) |
| 21 | elfzole1 13589 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 22 | 21, 8 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ 𝐾) |
| 23 | elfzo1 13634 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 24 | 23 | simp1bi 1145 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 25 | 24, 8 | eleq2s 2846 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ) |
| 26 | 25 | nnnn0d 12464 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℕ0) |
| 27 | nn0le2x 12457 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ≤ (2 · 𝐾)) |
| 29 | 15, 16, 20, 22, 28 | letrd 11292 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 1 ≤ (2 · 𝐾)) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 1 ≤ (2 · 𝐾)) |
| 31 | 8 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 32 | 2tceilhalfelfzo1 47336 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 33 | 31, 32 | sylan2b 594 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (2 · 𝐾) < 𝑁) |
| 34 | 30, 33 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 35 | breq2 5099 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 36 | breq1 5098 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 37 | 35, 36 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 38 | 34, 37 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 39 | 14, 38 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 40 | 39 | 3adant2 1131 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 41 | submodneaddmod 47355 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 + 𝐾) mod 𝑁) ≠ ((𝑌 − 𝐾) mod 𝑁)) | |
| 42 | 41 | necomd 2980 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| 43 | 2, 6, 10, 10, 40, 42 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11366 / cdiv 11796 ℕcn 12147 2c2 12202 3c3 12203 ℕ0cn0 12403 ℤcz 12490 ℤ≥cuz 12754 ..^cfzo 13576 ⌈cceil 13714 mod cmo 13792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-fl 13715 df-ceil 13716 df-mod 13793 df-dvds 16183 |
| This theorem is referenced by: modm1nep1 47369 gpgedg2iv 48071 gpg3nbgrvtx0ALT 48081 gpg3nbgrvtx1 48082 |
| Copyright terms: Public domain | W3C validator |