| Step | Hyp | Ref
| Expression |
| 1 | | pm3.22 459 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝑋 ∈ ℤ ∧ 𝑁 ∈
ℕ)) |
| 2 | 1 | 3adant3 1132 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → (𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ)) |
| 3 | | mod0mul 47347 |
. . . 4
⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁))) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁))) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = (𝑧 · 𝑁)) |
| 6 | | fveq2 6860 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = (𝑧 · 𝑁) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁))) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁))) |
| 8 | 7 | breq1d 5119 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 ↔ (abs‘(𝑧 · 𝑁)) < 𝑁)) |
| 9 | | zcn 12540 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
| 10 | | nncn 12195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 11 | | absmul 15266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
(abs‘(𝑧 ·
𝑁)) = ((abs‘𝑧) · (abs‘𝑁))) |
| 12 | 9, 10, 11 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(abs‘(𝑧 ·
𝑁)) = ((abs‘𝑧) · (abs‘𝑁))) |
| 13 | | nnre 12194 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 14 | | nnnn0 12455 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 15 | 14 | nn0ge0d 12512 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 0 ≤
𝑁) |
| 16 | 13, 15 | absidd 15395 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ →
(abs‘𝑁) = 𝑁) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(abs‘𝑁) = 𝑁) |
| 18 | 17 | oveq2d 7405 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘𝑧) ·
(abs‘𝑁)) =
((abs‘𝑧) ·
𝑁)) |
| 19 | 12, 18 | eqtrd 2765 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(abs‘(𝑧 ·
𝑁)) = ((abs‘𝑧) · 𝑁)) |
| 20 | 19 | breq1d 5119 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘(𝑧 ·
𝑁)) < 𝑁 ↔ ((abs‘𝑧) · 𝑁) < 𝑁)) |
| 21 | 9 | abscld 15411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℤ →
(abs‘𝑧) ∈
ℝ) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(abs‘𝑧) ∈
ℝ) |
| 23 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℝ) |
| 24 | | nngt0 12218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 25 | 13, 24 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 <
𝑁)) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 0 <
𝑁)) |
| 27 | | ltmuldiv 12062 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘𝑧)
∈ ℝ ∧ 𝑁
∈ ℝ ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁))) |
| 28 | 22, 23, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(((abs‘𝑧) ·
𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁))) |
| 29 | | nnne0 12221 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 30 | 10, 29 | dividd 11962 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 / 𝑁) = 1) |
| 32 | 31 | breq2d 5121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘𝑧) < (𝑁 / 𝑁) ↔ (abs‘𝑧) < 1)) |
| 33 | 28, 32 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(((abs‘𝑧) ·
𝑁) < 𝑁 ↔ (abs‘𝑧) < 1)) |
| 34 | | zabs0b 15286 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℤ →
((abs‘𝑧) < 1
↔ 𝑧 =
0)) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘𝑧) < 1
↔ 𝑧 =
0)) |
| 36 | | oveq1 7396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 0 → (𝑧 · 𝑁) = (0 · 𝑁)) |
| 37 | 10 | mul02d 11378 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → (0
· 𝑁) =
0) |
| 38 | 36, 37 | sylan9eqr 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 = 0) → (𝑧 · 𝑁) = 0) |
| 39 | 38 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑧 = 0 → (𝑧 · 𝑁) = 0)) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 = 0 → (𝑧 · 𝑁) = 0)) |
| 41 | 35, 40 | sylbid 240 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘𝑧) < 1
→ (𝑧 · 𝑁) = 0)) |
| 42 | 33, 41 | sylbid 240 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(((abs‘𝑧) ·
𝑁) < 𝑁 → (𝑧 · 𝑁) = 0)) |
| 43 | 20, 42 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((abs‘(𝑧 ·
𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘(𝑧 · 𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0)) |
| 45 | 8, 44 | sylbid 240 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0)) |
| 46 | 45 | expl 457 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0))) |
| 47 | 46 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0))) |
| 48 | 47 | com23 86 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) →
((abs‘𝑋) < 𝑁 → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0))) |
| 49 | 48 | 3impia 1117 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0)) |
| 50 | 49 | impl 455 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0) |
| 51 | 5, 50 | eqtrd 2765 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = 0) |
| 52 | 51 | ex 412 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) → (𝑋 = (𝑧 · 𝑁) → 𝑋 = 0)) |
| 53 | 52 | rexlimdva 3135 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → (∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁) → 𝑋 = 0)) |
| 54 | 4, 53 | syld 47 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → 𝑋 = 0)) |
| 55 | | oveq1 7396 |
. . . 4
⊢ (𝑋 = 0 → (𝑋 mod 𝑁) = (0 mod 𝑁)) |
| 56 | | nnrp 12969 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 57 | | 0mod 13870 |
. . . . . 6
⊢ (𝑁 ∈ ℝ+
→ (0 mod 𝑁) =
0) |
| 58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (0 mod
𝑁) = 0) |
| 59 | 58 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → (0 mod 𝑁) = 0) |
| 60 | 55, 59 | sylan9eqr 2787 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) ∧ 𝑋 = 0) → (𝑋 mod 𝑁) = 0) |
| 61 | 60 | ex 412 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → (𝑋 = 0 → (𝑋 mod 𝑁) = 0)) |
| 62 | 54, 61 | impbid 212 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧
(abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0)) |