Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modlt0b Structured version   Visualization version   GIF version

Theorem modlt0b 47394
Description: An integer with an absolute value less than a positive integer is 0 modulo the positive integer iff it is 0. (Contributed by AV, 21-Nov-2025.)
Assertion
Ref Expression
modlt0b ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0))

Proof of Theorem modlt0b
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.22 459 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ))
213adant3 1132 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ))
3 mod0mul 47387 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁)))
42, 3syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁)))
5 simpr 484 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = (𝑧 · 𝑁))
6 fveq2 6817 . . . . . . . . . . . . . 14 (𝑋 = (𝑧 · 𝑁) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁)))
76adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁)))
87breq1d 5096 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 ↔ (abs‘(𝑧 · 𝑁)) < 𝑁))
9 zcn 12468 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
10 nncn 12128 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
11 absmul 15196 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · (abs‘𝑁)))
129, 10, 11syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · (abs‘𝑁)))
13 nnre 12127 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nnnn0 12383 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1514nn0ge0d 12440 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1613, 15absidd 15325 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
1716adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘𝑁) = 𝑁)
1817oveq2d 7357 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) · (abs‘𝑁)) = ((abs‘𝑧) · 𝑁))
1912, 18eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · 𝑁))
2019breq1d 5096 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘(𝑧 · 𝑁)) < 𝑁 ↔ ((abs‘𝑧) · 𝑁) < 𝑁))
219abscld 15341 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (abs‘𝑧) ∈ ℝ)
2221adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘𝑧) ∈ ℝ)
2313adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℝ)
24 nngt0 12151 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 0 < 𝑁)
2513, 24jca 511 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
27 ltmuldiv 11990 . . . . . . . . . . . . . . . . 17 (((abs‘𝑧) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁)))
2822, 23, 26, 27syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁)))
29 nnne0 12154 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3010, 29dividd 11890 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
3130adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 / 𝑁) = 1)
3231breq2d 5098 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < (𝑁 / 𝑁) ↔ (abs‘𝑧) < 1))
3328, 32bitrd 279 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < 1))
34 zabs0b 15216 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → ((abs‘𝑧) < 1 ↔ 𝑧 = 0))
3534adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < 1 ↔ 𝑧 = 0))
36 oveq1 7348 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 0 → (𝑧 · 𝑁) = (0 · 𝑁))
3710mul02d 11306 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (0 · 𝑁) = 0)
3836, 37sylan9eqr 2788 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑧 = 0) → (𝑧 · 𝑁) = 0)
3938ex 412 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑧 = 0 → (𝑧 · 𝑁) = 0))
4039adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 = 0 → (𝑧 · 𝑁) = 0))
4135, 40sylbid 240 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < 1 → (𝑧 · 𝑁) = 0))
4233, 41sylbid 240 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 → (𝑧 · 𝑁) = 0))
4320, 42sylbid 240 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘(𝑧 · 𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0))
4443adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘(𝑧 · 𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0))
458, 44sylbid 240 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0))
4645expl 457 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0)))
4746adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0)))
4847com23 86 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → ((abs‘𝑋) < 𝑁 → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0)))
49483impia 1117 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0))
5049impl 455 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0)
515, 50eqtrd 2766 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = 0)
5251ex 412 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) → (𝑋 = (𝑧 · 𝑁) → 𝑋 = 0))
5352rexlimdva 3133 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁) → 𝑋 = 0))
544, 53syld 47 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → 𝑋 = 0))
55 oveq1 7348 . . . 4 (𝑋 = 0 → (𝑋 mod 𝑁) = (0 mod 𝑁))
56 nnrp 12897 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
57 0mod 13801 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 mod 𝑁) = 0)
59583ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (0 mod 𝑁) = 0)
6055, 59sylan9eqr 2788 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑋 = 0) → (𝑋 mod 𝑁) = 0)
6160ex 412 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (𝑋 = 0 → (𝑋 mod 𝑁) = 0))
6254, 61impbid 212 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   · cmul 11006   < clt 11141   / cdiv 11769  cn 12120  cz 12463  +crp 12885   mod cmo 13768  abscabs 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  mod2addne  47395
  Copyright terms: Public domain W3C validator