Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modlt0b Structured version   Visualization version   GIF version

Theorem modlt0b 47337
Description: An integer with an absolute value less than a positive integer is 0 modulo the positive integer iff it is 0. (Contributed by AV, 21-Nov-2025.)
Assertion
Ref Expression
modlt0b ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0))

Proof of Theorem modlt0b
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.22 459 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ))
213adant3 1132 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ))
3 mod0mul 47330 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁)))
42, 3syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → ∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁)))
5 simpr 484 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = (𝑧 · 𝑁))
6 fveq2 6840 . . . . . . . . . . . . . 14 (𝑋 = (𝑧 · 𝑁) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁)))
76adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (abs‘𝑋) = (abs‘(𝑧 · 𝑁)))
87breq1d 5112 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 ↔ (abs‘(𝑧 · 𝑁)) < 𝑁))
9 zcn 12510 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
10 nncn 12170 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
11 absmul 15236 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · (abs‘𝑁)))
129, 10, 11syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · (abs‘𝑁)))
13 nnre 12169 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nnnn0 12425 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1514nn0ge0d 12482 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1613, 15absidd 15365 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
1716adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘𝑁) = 𝑁)
1817oveq2d 7385 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) · (abs‘𝑁)) = ((abs‘𝑧) · 𝑁))
1912, 18eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘(𝑧 · 𝑁)) = ((abs‘𝑧) · 𝑁))
2019breq1d 5112 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘(𝑧 · 𝑁)) < 𝑁 ↔ ((abs‘𝑧) · 𝑁) < 𝑁))
219abscld 15381 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (abs‘𝑧) ∈ ℝ)
2221adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (abs‘𝑧) ∈ ℝ)
2313adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℝ)
24 nngt0 12193 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 0 < 𝑁)
2513, 24jca 511 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
27 ltmuldiv 12032 . . . . . . . . . . . . . . . . 17 (((abs‘𝑧) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁)))
2822, 23, 26, 27syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < (𝑁 / 𝑁)))
29 nnne0 12196 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3010, 29dividd 11932 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
3130adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑁 / 𝑁) = 1)
3231breq2d 5114 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < (𝑁 / 𝑁) ↔ (abs‘𝑧) < 1))
3328, 32bitrd 279 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 ↔ (abs‘𝑧) < 1))
34 zabs0b 15256 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → ((abs‘𝑧) < 1 ↔ 𝑧 = 0))
3534adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < 1 ↔ 𝑧 = 0))
36 oveq1 7376 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 0 → (𝑧 · 𝑁) = (0 · 𝑁))
3710mul02d 11348 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (0 · 𝑁) = 0)
3836, 37sylan9eqr 2786 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑧 = 0) → (𝑧 · 𝑁) = 0)
3938ex 412 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑧 = 0 → (𝑧 · 𝑁) = 0))
4039adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 = 0 → (𝑧 · 𝑁) = 0))
4135, 40sylbid 240 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘𝑧) < 1 → (𝑧 · 𝑁) = 0))
4233, 41sylbid 240 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((abs‘𝑧) · 𝑁) < 𝑁 → (𝑧 · 𝑁) = 0))
4320, 42sylbid 240 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((abs‘(𝑧 · 𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0))
4443adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘(𝑧 · 𝑁)) < 𝑁 → (𝑧 · 𝑁) = 0))
458, 44sylbid 240 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0))
4645expl 457 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0)))
4746adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → ((abs‘𝑋) < 𝑁 → (𝑧 · 𝑁) = 0)))
4847com23 86 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ) → ((abs‘𝑋) < 𝑁 → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0)))
49483impia 1117 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑧 ∈ ℤ ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0))
5049impl 455 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → (𝑧 · 𝑁) = 0)
515, 50eqtrd 2764 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) ∧ 𝑋 = (𝑧 · 𝑁)) → 𝑋 = 0)
5251ex 412 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑧 ∈ ℤ) → (𝑋 = (𝑧 · 𝑁) → 𝑋 = 0))
5352rexlimdva 3134 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (∃𝑧 ∈ ℤ 𝑋 = (𝑧 · 𝑁) → 𝑋 = 0))
544, 53syld 47 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 → 𝑋 = 0))
55 oveq1 7376 . . . 4 (𝑋 = 0 → (𝑋 mod 𝑁) = (0 mod 𝑁))
56 nnrp 12939 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
57 0mod 13840 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 mod 𝑁) = 0)
59583ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (0 mod 𝑁) = 0)
6055, 59sylan9eqr 2786 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) ∧ 𝑋 = 0) → (𝑋 mod 𝑁) = 0)
6160ex 412 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → (𝑋 = 0 → (𝑋 mod 𝑁) = 0))
6254, 61impbid 212 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184   / cdiv 11811  cn 12162  cz 12505  +crp 12927   mod cmo 13807  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  mod2addne  47338
  Copyright terms: Public domain W3C validator