Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modmkpkne Structured version   Visualization version   GIF version

Theorem modmkpkne 47365
Description: If an integer minus a constant equals another integer plus the constant modulo 𝑁, then the first integer plus the constant equals the second integer minus the constant modulo 𝑁 iff the fourfold of the constant is a multiple of 𝑁. (Contributed by AV, 15-Nov-2025.)
Assertion
Ref Expression
modmkpkne ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 𝑁) → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0)))

Proof of Theorem modmkpkne
StepHypRef Expression
1 zsubcl 12536 . . . 4 ((𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑌𝐾) ∈ ℤ)
213adant1 1130 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑌𝐾) ∈ ℤ)
3 zaddcl 12534 . . . 4 ((𝑋 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑋 + 𝐾) ∈ ℤ)
433adant2 1131 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑋 + 𝐾) ∈ ℤ)
5 simpl 482 . . 3 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑁 ∈ ℕ)
6 difmod0 16217 . . 3 (((𝑌𝐾) ∈ ℤ ∧ (𝑋 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 𝑁)))
72, 4, 5, 6syl2an23an 1425 . 2 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 𝑁)))
8 zcn 12495 . . . . . . . . . 10 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
983ad2ant2 1134 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑌 ∈ ℂ)
10 zcn 12495 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
11103ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
12 zcn 12495 . . . . . . . . . 10 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
13123ad2ant1 1133 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑋 ∈ ℂ)
149, 11, 13, 11subsubadd23 11546 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑌𝐾) − (𝑋 + 𝐾)) = ((𝑌𝑋) − (𝐾 + 𝐾)))
15102timesd 12386 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (2 · 𝐾) = (𝐾 + 𝐾))
1615eqcomd 2735 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 𝐾) = (2 · 𝐾))
17163ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 + 𝐾) = (2 · 𝐾))
1817oveq2d 7369 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑌𝑋) − (𝐾 + 𝐾)) = ((𝑌𝑋) − (2 · 𝐾)))
1914, 18eqtrd 2764 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑌𝐾) − (𝑋 + 𝐾)) = ((𝑌𝑋) − (2 · 𝐾)))
2019adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑌𝐾) − (𝑋 + 𝐾)) = ((𝑌𝑋) − (2 · 𝐾)))
2120oveq1d 7368 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = (((𝑌𝑋) − (2 · 𝐾)) mod 𝑁))
2221eqeq1d 2731 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = 0 ↔ (((𝑌𝑋) − (2 · 𝐾)) mod 𝑁) = 0))
23 zsubcl 12536 . . . . . . 7 ((𝑌 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑌𝑋) ∈ ℤ)
2423ancoms 458 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌𝑋) ∈ ℤ)
25243adant3 1132 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑌𝑋) ∈ ℤ)
26 2z 12526 . . . . . . . 8 2 ∈ ℤ
2726a1i 11 . . . . . . 7 (𝐾 ∈ ℤ → 2 ∈ ℤ)
28 id 22 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
2927, 28zmulcld 12605 . . . . . 6 (𝐾 ∈ ℤ → (2 · 𝐾) ∈ ℤ)
30293ad2ant3 1135 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 · 𝐾) ∈ ℤ)
31 difmod0 16217 . . . . 5 (((𝑌𝑋) ∈ ℤ ∧ (2 · 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑌𝑋) − (2 · 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)))
3225, 30, 5, 31syl2an23an 1425 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝑋) − (2 · 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)))
3322, 32bitrd 279 . . 3 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)))
349adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑌 ∈ ℂ)
3511adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℂ)
3613adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑋 ∈ ℂ)
3734, 35, 36, 35addsubsub23 11547 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑌 + 𝐾) − (𝑋𝐾)) = ((𝑌𝑋) + (𝐾 + 𝐾)))
3817adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 + 𝐾) = (2 · 𝐾))
3938oveq2d 7369 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑌𝑋) + (𝐾 + 𝐾)) = ((𝑌𝑋) + (2 · 𝐾)))
4037, 39eqtrd 2764 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑌 + 𝐾) − (𝑋𝐾)) = ((𝑌𝑋) + (2 · 𝐾)))
4140oveq1d 7368 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = (((𝑌𝑋) + (2 · 𝐾)) mod 𝑁))
4241eqeq1d 2731 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ (((𝑌𝑋) + (2 · 𝐾)) mod 𝑁) = 0))
43 summodnegmod 16216 . . . . . . . 8 (((𝑌𝑋) ∈ ℤ ∧ (2 · 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑌𝑋) + (2 · 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
4425, 30, 5, 43syl2an23an 1425 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝑋) + (2 · 𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
4542, 44bitrd 279 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
4645adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ∧ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ ((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
47 zaddcl 12534 . . . . . . . 8 ((𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑌 + 𝐾) ∈ ℤ)
48473adant1 1130 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑌 + 𝐾) ∈ ℤ)
49 zsubcl 12536 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑋𝐾) ∈ ℤ)
50493adant2 1131 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑋𝐾) ∈ ℤ)
51 difmod0 16217 . . . . . . 7 (((𝑌 + 𝐾) ∈ ℤ ∧ (𝑋𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ ((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁)))
5248, 50, 5, 51syl2an23an 1425 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ ((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁)))
5352adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ∧ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)) → ((((𝑌 + 𝐾) − (𝑋𝐾)) mod 𝑁) = 0 ↔ ((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁)))
54 eqeq1 2733 . . . . . 6 (((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁) → (((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁) ↔ ((2 · 𝐾) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
55 2t2e4 12306 . . . . . . . . . . . . . 14 (2 · 2) = 4
5655eqcomi 2738 . . . . . . . . . . . . 13 4 = (2 · 2)
5756oveq1i 7363 . . . . . . . . . . . 12 (4 · 𝐾) = ((2 · 2) · 𝐾)
58 2cnd 12225 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 2 ∈ ℂ)
5958, 58, 10mulassd 11157 . . . . . . . . . . . . 13 (𝐾 ∈ ℤ → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
6029zcnd 12600 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → (2 · 𝐾) ∈ ℂ)
61602timesd 12386 . . . . . . . . . . . . 13 (𝐾 ∈ ℤ → (2 · (2 · 𝐾)) = ((2 · 𝐾) + (2 · 𝐾)))
6259, 61eqtrd 2764 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → ((2 · 2) · 𝐾) = ((2 · 𝐾) + (2 · 𝐾)))
6357, 62eqtrid 2776 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (4 · 𝐾) = ((2 · 𝐾) + (2 · 𝐾)))
64633ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (4 · 𝐾) = ((2 · 𝐾) + (2 · 𝐾)))
6564adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (4 · 𝐾) = ((2 · 𝐾) + (2 · 𝐾)))
6665oveq1d 7368 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((4 · 𝐾) mod 𝑁) = (((2 · 𝐾) + (2 · 𝐾)) mod 𝑁))
6766eqeq1d 2731 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((4 · 𝐾) mod 𝑁) = 0 ↔ (((2 · 𝐾) + (2 · 𝐾)) mod 𝑁) = 0))
68 summodnegmod 16216 . . . . . . . 8 (((2 · 𝐾) ∈ ℤ ∧ (2 · 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + (2 · 𝐾)) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
6930, 30, 5, 68syl2an23an 1425 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((2 · 𝐾) + (2 · 𝐾)) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-(2 · 𝐾) mod 𝑁)))
7067, 69bitr2d 280 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝐾) mod 𝑁) = (-(2 · 𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0))
7154, 70sylan9bbr 510 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ∧ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)) → (((𝑌𝑋) mod 𝑁) = (-(2 · 𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0))
7246, 53, 713bitr3d 309 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ∧ ((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁)) → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0))
7372ex 412 . . 3 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌𝑋) mod 𝑁) = ((2 · 𝐾) mod 𝑁) → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0)))
7433, 73sylbid 240 . 2 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((((𝑌𝐾) − (𝑋 + 𝐾)) mod 𝑁) = 0 → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0)))
757, 74sylbird 260 1 ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 𝑁) → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026  0cc0 11028   + caddc 11031   · cmul 11033  cmin 11366  -cneg 11367  cn 12147  2c2 12202  4c4 12204  cz 12490   mod cmo 13792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fl 13715  df-mod 13793  df-dvds 16183
This theorem is referenced by:  modm1p1ne  47374  gpgedg2iv  48071
  Copyright terms: Public domain W3C validator