![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvsi | Structured version Visualization version GIF version |
Description: The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
isncvsngp.v | ⊢ 𝑉 = (Base‘𝑊) |
isncvsngp.n | ⊢ 𝑁 = (norm‘𝑊) |
isncvsngp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isncvsngp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isncvsngp.k | ⊢ 𝐾 = (Base‘𝐹) |
ncvsi.m | ⊢ − = (-g‘𝑊) |
ncvsi.0 | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ncvsi | ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isncvsngp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isncvsngp.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
3 | isncvsngp.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | isncvsngp.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | isncvsngp.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 1, 2, 3, 4, 5 | isncvsngp 25205 | . 2 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
7 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → 𝑊 ∈ ℂVec) | |
8 | 1, 2 | nmf 24650 | . . . 4 ⊢ (𝑊 ∈ NrmGrp → 𝑁:𝑉⟶ℝ) |
9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → 𝑁:𝑉⟶ℝ) |
10 | ncvsi.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
11 | ncvsi.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
12 | 1, 2, 10, 11 | ngpi 24663 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
13 | r19.26 3110 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝑉 ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) ↔ (∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) | |
14 | simpll 767 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
15 | simplr 769 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
16 | simpr 484 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) | |
17 | 14, 15, 16 | 3jca 1128 | . . . . . . . . . 10 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
18 | 17 | ralimi 3082 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝑉 ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
19 | 13, 18 | sylbir 235 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
20 | 19 | ex 412 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
21 | 20 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
23 | 22 | imp 406 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
24 | 23 | 3adant1 1130 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
25 | 7, 9, 24 | 3jca 1128 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
26 | 6, 25 | sylbi 217 | 1 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ∩ cin 3963 class class class wbr 5149 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ℝcr 11158 0cc0 11159 + caddc 11162 · cmul 11164 ≤ cle 11300 abscabs 15276 Basecbs 17251 Scalarcsca 17307 ·𝑠 cvsca 17308 0gc0g 17492 Grpcgrp 18970 -gcsg 18972 normcnm 24611 NrmGrpcngp 24612 NrmVeccnvc 24616 ℂVecccvs 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 ax-mulf 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ico 13396 df-fz 13551 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-rest 17475 df-topn 17476 df-0g 17494 df-topgen 17496 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-cring 20260 df-subrng 20569 df-subrg 20593 df-abv 20833 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-xms 24352 df-ms 24353 df-nm 24617 df-ngp 24618 df-nrg 24620 df-nlm 24621 df-nvc 24622 df-clm 25118 df-cvs 25179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |