Proof of Theorem cos9thpiminplylem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0) → 𝑋 = 0) |
| 2 | 1 | oveq1d 7415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0) → (𝑋↑3) = (0↑3)) |
| 3 | | 3nn 12312 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
| 4 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0) → 3 ∈
ℕ) |
| 5 | 4 | 0expd 14147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0) → (0↑3) =
0) |
| 6 | 2, 5 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0) → (𝑋↑3) = 0) |
| 7 | 1 | oveq1d 7415 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 0) → (𝑋↑2) = (0↑2)) |
| 8 | 7 | oveq2d 7416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0) → (-3 · (𝑋↑2)) = (-3 ·
(0↑2))) |
| 9 | | 2nn 12306 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
| 10 | 9 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 0) → 2 ∈
ℕ) |
| 11 | 10 | 0expd 14147 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 0) → (0↑2) =
0) |
| 12 | 11 | oveq2d 7416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0) → (-3 · (0↑2)) = (-3
· 0)) |
| 13 | | 3nn0 12512 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℕ0 |
| 14 | 13 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 3 ∈
ℕ0) |
| 15 | 14 | nn0cnd 12557 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 3 ∈
ℂ) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 0) → 3 ∈
ℂ) |
| 17 | 16 | negcld 11574 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 0) → -3 ∈
ℂ) |
| 18 | 17 | mul01d 11427 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0) → (-3 · 0) =
0) |
| 19 | 8, 12, 18 | 3eqtrd 2773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0) → (-3 · (𝑋↑2)) = 0) |
| 20 | 19 | oveq1d 7415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0) → ((-3 · (𝑋↑2)) + 1) = (0 +
1)) |
| 21 | 6, 20 | oveq12d 7418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (0 + (0 +
1))) |
| 22 | | 0cnd 11221 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0) → 0 ∈
ℂ) |
| 23 | | 1cnd 11223 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0) → 1 ∈
ℂ) |
| 24 | 22, 23 | addcld 11247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0) → (0 + 1) ∈
ℂ) |
| 25 | 24 | addlidd 11429 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 0) → (0 + (0 + 1)) = (0 +
1)) |
| 26 | | 1cnd 11223 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 27 | 26 | addlidd 11429 |
. . . . . . . 8
⊢ (𝜑 → (0 + 1) =
1) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 0) → (0 + 1) = 1) |
| 29 | 21, 25, 28 | 3eqtrd 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = 1) |
| 30 | | ax-1ne0 11191 |
. . . . . . 7
⊢ 1 ≠
0 |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0) → 1 ≠ 0) |
| 32 | 29, 31 | eqnetrd 2998 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 33 | 32 | ad4ant14 752 |
. . . 4
⊢ ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → 𝑋 = 1) |
| 35 | 34 | oveq1d 7415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (𝑋↑3) = (1↑3)) |
| 36 | | 3z 12618 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
| 37 | | 1exp 14099 |
. . . . . . . . . 10
⊢ (3 ∈
ℤ → (1↑3) = 1) |
| 38 | 36, 37 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (1↑3) =
1) |
| 39 | 35, 38 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → (𝑋↑3) = 1) |
| 40 | 34 | oveq1d 7415 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 1) → (𝑋↑2) = (1↑2)) |
| 41 | 40 | oveq2d 7416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 · (𝑋↑2)) = (-3 ·
(1↑2))) |
| 42 | | sq1 14203 |
. . . . . . . . . . . 12
⊢
(1↑2) = 1 |
| 43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 1) → (1↑2) =
1) |
| 44 | 43 | oveq2d 7416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 · (1↑2)) = (-3
· 1)) |
| 45 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 1) → 3 ∈
ℂ) |
| 46 | 45 | negcld 11574 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 1) → -3 ∈
ℂ) |
| 47 | 46 | mulridd 11245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 · 1) =
-3) |
| 48 | 41, 44, 47 | 3eqtrd 2773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 · (𝑋↑2)) = -3) |
| 49 | 48 | oveq1d 7415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → ((-3 · (𝑋↑2)) + 1) = (-3 +
1)) |
| 50 | 39, 49 | oveq12d 7418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (1 + (-3 +
1))) |
| 51 | | 1cnd 11223 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → 1 ∈
ℂ) |
| 52 | 46, 51 | addcomd 11430 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 + 1) = (1 +
-3)) |
| 53 | 51, 45 | negsubd 11593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (1 + -3) = (1 −
3)) |
| 54 | 52, 53 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → (-3 + 1) = (1 −
3)) |
| 55 | 54 | oveq2d 7416 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1) → (1 + (-3 + 1)) = (1 + (1
− 3))) |
| 56 | | 1p1e2 12358 |
. . . . . . . . . 10
⊢ (1 + 1) =
2 |
| 57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → (1 + 1) = 2) |
| 58 | 57 | oveq1d 7415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → ((1 + 1) − 3) = (2
− 3)) |
| 59 | 51, 51, 45 | addsubassd 11607 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → ((1 + 1) − 3) = (1 + (1
− 3))) |
| 60 | | 2cnd 12311 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → 2 ∈
ℂ) |
| 61 | 45, 60 | negsubdi2d 11603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → -(3 − 2) = (2 −
3)) |
| 62 | | 2p1e3 12375 |
. . . . . . . . . . . . 13
⊢ (2 + 1) =
3 |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 1) → (2 + 1) = 3) |
| 64 | 63 | eqcomd 2740 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 1) → 3 = (2 + 1)) |
| 65 | 60, 51, 64 | mvrladdd 11643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1) → (3 − 2) =
1) |
| 66 | 65 | negeqd 11469 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1) → -(3 − 2) =
-1) |
| 67 | 61, 66 | eqtr3d 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1) → (2 − 3) =
-1) |
| 68 | 58, 59, 67 | 3eqtr3d 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1) → (1 + (1 − 3)) =
-1) |
| 69 | 50, 55, 68 | 3eqtrd 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = -1) |
| 70 | | neg1ne0 12349 |
. . . . . . 7
⊢ -1 ≠
0 |
| 71 | 70 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 1) → -1 ≠ 0) |
| 72 | 69, 71 | eqnetrd 2998 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 73 | 72 | ad4ant14 752 |
. . . 4
⊢ ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 74 | | oveq1 7407 |
. . . . . . . . . 10
⊢ (𝑋 = 2 → (𝑋↑3) = (2↑3)) |
| 75 | 74 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → (𝑋↑3) = (2↑3)) |
| 76 | | cu2 14208 |
. . . . . . . . 9
⊢
(2↑3) = 8 |
| 77 | 75, 76 | eqtrdi 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → (𝑋↑3) = 8) |
| 78 | | cos9thpiminplylem1.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ ℤ) |
| 79 | 78 | zred 12690 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 80 | 79 | resqcld 14133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋↑2) ∈ ℝ) |
| 81 | 80 | recnd 11256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋↑2) ∈ ℂ) |
| 82 | 15, 81 | mulneg1d 11683 |
. . . . . . . . . . 11
⊢ (𝜑 → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2))) |
| 83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2))) |
| 84 | | oveq1 7407 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 2 → (𝑋↑2) = (2↑2)) |
| 85 | 84 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 2) → (𝑋↑2) = (2↑2)) |
| 86 | | sq2 14205 |
. . . . . . . . . . . . 13
⊢
(2↑2) = 4 |
| 87 | 85, 86 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 2) → (𝑋↑2) = 4) |
| 88 | 87 | oveq2d 7416 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → (3 · (𝑋↑2)) = (3 · 4)) |
| 89 | 88 | negeqd 11469 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → -(3 · (𝑋↑2)) = -(3 ·
4)) |
| 90 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 2) → 3 ∈
ℂ) |
| 91 | | 4cn 12318 |
. . . . . . . . . . . . . 14
⊢ 4 ∈
ℂ |
| 92 | 91 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 2) → 4 ∈
ℂ) |
| 93 | 90, 92 | mulcomd 11249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 2) → (3 · 4) = (4 ·
3)) |
| 94 | | 4t3e12 12799 |
. . . . . . . . . . . 12
⊢ (4
· 3) = ;12 |
| 95 | 93, 94 | eqtrdi 2785 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → (3 · 4) = ;12) |
| 96 | 95 | negeqd 11469 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → -(3 · 4) = -;12) |
| 97 | 83, 89, 96 | 3eqtrd 2773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → (-3 · (𝑋↑2)) = -;12) |
| 98 | 97 | oveq1d 7415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → ((-3 · (𝑋↑2)) + 1) = (-;12 + 1)) |
| 99 | 77, 98 | oveq12d 7418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (8 + (-;12 + 1))) |
| 100 | | 1nn0 12510 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℕ0 |
| 101 | | 2nn0 12511 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ0 |
| 102 | 100, 101 | deccl 12716 |
. . . . . . . . . . . . . 14
⊢ ;12 ∈
ℕ0 |
| 103 | 102 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 2) → ;12 ∈ ℕ0) |
| 104 | 103 | nn0cnd 12557 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 2) → ;12 ∈ ℂ) |
| 105 | 104 | negcld 11574 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → -;12 ∈ ℂ) |
| 106 | | 1cnd 11223 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → 1 ∈
ℂ) |
| 107 | 105, 106 | addcomd 11430 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → (-;12 + 1) = (1 + -;12)) |
| 108 | 106, 104 | negsubd 11593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → (1 + -;12) = (1 − ;12)) |
| 109 | 107, 108 | eqtrd 2769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → (-;12 + 1) = (1 − ;12)) |
| 110 | 104, 106 | negsubdi2d 11603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → -(;12 − 1) = (1 − ;12)) |
| 111 | 100, 100 | deccl 12716 |
. . . . . . . . . . . . 13
⊢ ;11 ∈
ℕ0 |
| 112 | 111 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 2) → ;11 ∈ ℕ0) |
| 113 | 112 | nn0cnd 12557 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → ;11 ∈ ℂ) |
| 114 | 106, 113 | addcomd 11430 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 2) → (1 + ;11) = (;11 + 1)) |
| 115 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ ;11 = ;11 |
| 116 | 100, 100,
56, 115 | decsuc 12732 |
. . . . . . . . . . . 12
⊢ (;11 + 1) = ;12 |
| 117 | 114, 116 | eqtr2di 2786 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → ;12 = (1 + ;11)) |
| 118 | 106, 113,
117 | mvrladdd 11643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → (;12 − 1) = ;11) |
| 119 | 118 | negeqd 11469 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → -(;12 − 1) = -;11) |
| 120 | 109, 110,
119 | 3eqtr2d 2775 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → (-;12 + 1) = -;11) |
| 121 | 120 | oveq2d 7416 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 2) → (8 + (-;12 + 1)) = (8 + -;11)) |
| 122 | | 8nn0 12517 |
. . . . . . . . . . 11
⊢ 8 ∈
ℕ0 |
| 123 | 122 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → 8 ∈
ℕ0) |
| 124 | 123 | nn0cnd 12557 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → 8 ∈
ℂ) |
| 125 | 124, 113 | negsubd 11593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → (8 + -;11) = (8 − ;11)) |
| 126 | 113, 124 | negsubdi2d 11603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → -(;11 − 8) = (8 − ;11)) |
| 127 | | 8p3e11 12782 |
. . . . . . . . . . . 12
⊢ (8 + 3) =
;11 |
| 128 | 127 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 2) → (8 + 3) = ;11) |
| 129 | 128 | eqcomd 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 2) → ;11 = (8 + 3)) |
| 130 | 124, 90, 129 | mvrladdd 11643 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 2) → (;11 − 8) = 3) |
| 131 | 130 | negeqd 11469 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 2) → -(;11 − 8) = -3) |
| 132 | 125, 126,
131 | 3eqtr2d 2775 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 2) → (8 + -;11) = -3) |
| 133 | 99, 121, 132 | 3eqtrd 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = -3) |
| 134 | | 0red 11231 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
| 135 | 14 | nn0red 12556 |
. . . . . . . . 9
⊢ (𝜑 → 3 ∈
ℝ) |
| 136 | | neg0 11522 |
. . . . . . . . . . 11
⊢ -0 =
0 |
| 137 | 136 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -0 = 0) |
| 138 | | 3pos 12338 |
. . . . . . . . . 10
⊢ 0 <
3 |
| 139 | 137, 138 | eqbrtrdi 5156 |
. . . . . . . . 9
⊢ (𝜑 → -0 <
3) |
| 140 | 134, 135,
139 | ltnegcon1d 11810 |
. . . . . . . 8
⊢ (𝜑 → -3 <
0) |
| 141 | 140 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 2) → -3 < 0) |
| 142 | 141 | lt0ne0d 11795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 2) → -3 ≠ 0) |
| 143 | 133, 142 | eqnetrd 2998 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 144 | 143 | ad4ant14 752 |
. . . 4
⊢ ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 145 | 78 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ ℤ) |
| 146 | | 0zd 12593 |
. . . . . . 7
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 0 ∈
ℤ) |
| 147 | 36 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 3 ∈
ℤ) |
| 148 | | df-neg 11462 |
. . . . . . . . 9
⊢ -1 = (0
− 1) |
| 149 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → -1 < 𝑋) |
| 150 | 148, 149 | eqbrtrrid 5153 |
. . . . . . . 8
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → (0 − 1) < 𝑋) |
| 151 | | zlem1lt 12637 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ 𝑋
∈ ℤ) → (0 ≤ 𝑋 ↔ (0 − 1) < 𝑋)) |
| 152 | 151 | biimpar 477 |
. . . . . . . 8
⊢ (((0
∈ ℤ ∧ 𝑋
∈ ℤ) ∧ (0 − 1) < 𝑋) → 0 ≤ 𝑋) |
| 153 | 146, 145,
150, 152 | syl21anc 837 |
. . . . . . 7
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 0 ≤ 𝑋) |
| 154 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 < 3) |
| 155 | | elfzo 13668 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℤ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) → (𝑋 ∈ (0..^3) ↔ (0 ≤ 𝑋 ∧ 𝑋 < 3))) |
| 156 | 155 | biimpar 477 |
. . . . . . 7
⊢ (((𝑋 ∈ ℤ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) ∧ (0 ≤ 𝑋 ∧ 𝑋 < 3)) → 𝑋 ∈ (0..^3)) |
| 157 | 145, 146,
147, 153, 154, 156 | syl32anc 1379 |
. . . . . 6
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ (0..^3)) |
| 158 | | fzo0to3tp 13758 |
. . . . . 6
⊢ (0..^3) =
{0, 1, 2} |
| 159 | 157, 158 | eleqtrdi 2843 |
. . . . 5
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ {0, 1, 2}) |
| 160 | | eltpg 4660 |
. . . . . 6
⊢ (𝑋 ∈ ℤ → (𝑋 ∈ {0, 1, 2} ↔ (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2))) |
| 161 | 160 | biimpa 476 |
. . . . 5
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ∈ {0, 1, 2}) → (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2)) |
| 162 | 145, 159,
161 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2)) |
| 163 | 33, 73, 144, 162 | mpjao3dan 1433 |
. . 3
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 164 | 78, 14 | zexpcld 14095 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋↑3) ∈ ℤ) |
| 165 | 164 | zred 12690 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋↑3) ∈ ℝ) |
| 166 | 135 | renegcld 11657 |
. . . . . . . . . 10
⊢ (𝜑 → -3 ∈
ℝ) |
| 167 | 166, 80 | remulcld 11258 |
. . . . . . . . 9
⊢ (𝜑 → (-3 · (𝑋↑2)) ∈
ℝ) |
| 168 | 165, 167 | readdcld 11257 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ) |
| 169 | 168 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ) |
| 170 | | 1red 11229 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 1 ∈ ℝ) |
| 171 | 80 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋↑2) ∈ ℝ) |
| 172 | 79, 135 | resubcld 11658 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 − 3) ∈ ℝ) |
| 173 | 172 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋 − 3) ∈ ℝ) |
| 174 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 𝑋 ∈ ℝ) |
| 175 | 174 | sqge0d 14145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ (𝑋↑2)) |
| 176 | 135 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 3 ∈ ℝ) |
| 177 | | 0red 11231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 ∈ ℝ) |
| 178 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 3 ≤ 𝑋) |
| 179 | 79 | recnd 11256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 180 | 179 | subid1d 11576 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 181 | 180 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋 − 0) = 𝑋) |
| 182 | 178, 181 | breqtrrd 5145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 3 ≤ (𝑋 − 0)) |
| 183 | 176, 174,
177, 182 | lesubd 11834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ (𝑋 − 3)) |
| 184 | 171, 173,
175, 183 | mulge0d 11807 |
. . . . . . . 8
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ ((𝑋↑2) · (𝑋 − 3))) |
| 185 | 81, 179, 15 | subdid 11686 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋↑2) · (𝑋 − 3)) = (((𝑋↑2) · 𝑋) − ((𝑋↑2) · 3))) |
| 186 | 81, 179 | mulcld 11248 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋↑2) · 𝑋) ∈ ℂ) |
| 187 | 81, 15 | mulcld 11248 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋↑2) · 3) ∈
ℂ) |
| 188 | 186, 187 | negsubd 11593 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑋↑2) · 𝑋) + -((𝑋↑2) · 3)) = (((𝑋↑2) · 𝑋) − ((𝑋↑2) · 3))) |
| 189 | 100 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℕ0) |
| 190 | 101 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℕ0) |
| 191 | 179, 189,
190 | expaddd 14156 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋↑(2 + 1)) = ((𝑋↑2) · (𝑋↑1))) |
| 192 | 62 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 + 1) =
3) |
| 193 | 192 | oveq2d 7416 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋↑(2 + 1)) = (𝑋↑3)) |
| 194 | 179 | exp1d 14149 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋↑1) = 𝑋) |
| 195 | 194 | oveq2d 7416 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋↑2) · (𝑋↑1)) = ((𝑋↑2) · 𝑋)) |
| 196 | 191, 193,
195 | 3eqtr3rd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋↑2) · 𝑋) = (𝑋↑3)) |
| 197 | 81, 15 | mulcomd 11249 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑋↑2) · 3) = (3 · (𝑋↑2))) |
| 198 | 197 | negeqd 11469 |
. . . . . . . . . . . 12
⊢ (𝜑 → -((𝑋↑2) · 3) = -(3 · (𝑋↑2))) |
| 199 | 198, 82 | eqtr4d 2772 |
. . . . . . . . . . 11
⊢ (𝜑 → -((𝑋↑2) · 3) = (-3 · (𝑋↑2))) |
| 200 | 196, 199 | oveq12d 7418 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑋↑2) · 𝑋) + -((𝑋↑2) · 3)) = ((𝑋↑3) + (-3 · (𝑋↑2)))) |
| 201 | 185, 188,
200 | 3eqtr2d 2775 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋↑2) · (𝑋 − 3)) = ((𝑋↑3) + (-3 · (𝑋↑2)))) |
| 202 | 201 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑2) · (𝑋 − 3)) = ((𝑋↑3) + (-3 · (𝑋↑2)))) |
| 203 | 184, 202 | breqtrd 5143 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ ((𝑋↑3) + (-3 · (𝑋↑2)))) |
| 204 | | 0lt1 11752 |
. . . . . . . 8
⊢ 0 <
1 |
| 205 | 204 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 < 1) |
| 206 | 169, 170,
203, 205 | addgegt0d 11803 |
. . . . . 6
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 < (((𝑋↑3) + (-3 · (𝑋↑2))) + 1)) |
| 207 | 165 | recnd 11256 |
. . . . . . . 8
⊢ (𝜑 → (𝑋↑3) ∈ ℂ) |
| 208 | 207 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋↑3) ∈ ℂ) |
| 209 | 167 | recnd 11256 |
. . . . . . . 8
⊢ (𝜑 → (-3 · (𝑋↑2)) ∈
ℂ) |
| 210 | 209 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (-3 · (𝑋↑2)) ∈ ℂ) |
| 211 | | 1cnd 11223 |
. . . . . . 7
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 1 ∈ ℂ) |
| 212 | 208, 210,
211 | addassd 11250 |
. . . . . 6
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) = ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1))) |
| 213 | 206, 212 | breqtrd 5143 |
. . . . 5
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → 0 < ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1))) |
| 214 | 213 | gt0ne0d 11794 |
. . . 4
⊢ ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 215 | 214 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ -1 < 𝑋) ∧ 3 ≤ 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 216 | 79 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ -1 < 𝑋) → 𝑋 ∈ ℝ) |
| 217 | 135 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ -1 < 𝑋) → 3 ∈ ℝ) |
| 218 | 163, 215,
216, 217 | ltlecasei 11336 |
. 2
⊢ ((𝜑 ∧ -1 < 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 219 | 165 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑3) ∈ ℝ) |
| 220 | 167 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-3 · (𝑋↑2)) ∈
ℝ) |
| 221 | | 1red 11229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 1 ∈
ℝ) |
| 222 | 220, 221 | readdcld 11257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((-3 · (𝑋↑2)) + 1) ∈
ℝ) |
| 223 | 219, 222 | readdcld 11257 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ∈
ℝ) |
| 224 | 166 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -3 ∈
ℝ) |
| 225 | | 0red 11231 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 0 ∈
ℝ) |
| 226 | 219, 220 | readdcld 11257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ) |
| 227 | | 4re 12317 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
| 228 | 227 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 4 ∈
ℝ) |
| 229 | 228 | renegcld 11657 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -4 ∈
ℝ) |
| 230 | | 1red 11229 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 231 | 230 | renegcld 11657 |
. . . . . . . . 9
⊢ (𝜑 → -1 ∈
ℝ) |
| 232 | 231 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -1 ∈
ℝ) |
| 233 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 𝑋 ∈ ℝ) |
| 234 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 3 ∈
ℕ) |
| 235 | | n2dvds3 16377 |
. . . . . . . . . . 11
⊢ ¬ 2
∥ 3 |
| 236 | 235 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ¬ 2 ∥
3) |
| 237 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 𝑋 ≤ -1) |
| 238 | 233, 232,
234, 236, 237 | oexpled 32763 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑3) ≤ (-1↑3)) |
| 239 | | m1expo 16381 |
. . . . . . . . . 10
⊢ ((3
∈ ℤ ∧ ¬ 2 ∥ 3) → (-1↑3) =
-1) |
| 240 | 36, 236, 239 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-1↑3) =
-1) |
| 241 | 238, 240 | breqtrd 5143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑3) ≤ -1) |
| 242 | 234 | nncnd 12249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 3 ∈
ℂ) |
| 243 | 81 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑2) ∈ ℂ) |
| 244 | 242, 243 | mulneg1d 11683 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2))) |
| 245 | 135 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 3 ∈
ℝ) |
| 246 | 135, 80 | remulcld 11258 |
. . . . . . . . . . 11
⊢ (𝜑 → (3 · (𝑋↑2)) ∈
ℝ) |
| 247 | 246 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (3 · (𝑋↑2)) ∈
ℝ) |
| 248 | 80 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑2) ∈ ℝ) |
| 249 | 13 | nn0ge0i 12521 |
. . . . . . . . . . . 12
⊢ 0 ≤
3 |
| 250 | 249 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 0 ≤ 3) |
| 251 | 233, 221,
237 | lenegcon2d 11813 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 1 ≤ -𝑋) |
| 252 | 233 | renegcld 11657 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -𝑋 ∈ ℝ) |
| 253 | | 0le1 11753 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≤
1 |
| 254 | 253 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 0 ≤ 1) |
| 255 | | neg1rr 12348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 ∈
ℝ |
| 256 | | 0re 11230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ |
| 257 | | neg1lt0 12350 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 <
0 |
| 258 | 255, 256,
257 | ltleii 11351 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ≤
0 |
| 259 | 258 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -1 ≤ 0) |
| 260 | 233, 232,
225, 237, 259 | letrd 11385 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 𝑋 ≤ 0) |
| 261 | | leneg 11733 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑋 ≤ 0
↔ -0 ≤ -𝑋)) |
| 262 | 261 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∈ ℝ ∧ 0 ∈
ℝ) ∧ 𝑋 ≤ 0)
→ -0 ≤ -𝑋) |
| 263 | 233, 225,
260, 262 | syl21anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -0 ≤ -𝑋) |
| 264 | 136, 263 | eqbrtrrid 5153 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 0 ≤ -𝑋) |
| 265 | 221, 252,
254, 264 | le2sqd 14265 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (1 ≤ -𝑋 ↔ (1↑2) ≤ (-𝑋↑2))) |
| 266 | 251, 265 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (1↑2) ≤ (-𝑋↑2)) |
| 267 | 233 | recnd 11256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 𝑋 ∈ ℂ) |
| 268 | 267 | sqnegd 14124 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-𝑋↑2) = (𝑋↑2)) |
| 269 | 266, 268 | breqtrd 5143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (1↑2) ≤ (𝑋↑2)) |
| 270 | 42, 269 | eqbrtrrid 5153 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 1 ≤ (𝑋↑2)) |
| 271 | 245, 248,
250, 270 | lemulge11d 12172 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 3 ≤ (3 · (𝑋↑2))) |
| 272 | | leneg 11733 |
. . . . . . . . . . 11
⊢ ((3
∈ ℝ ∧ (3 · (𝑋↑2)) ∈ ℝ) → (3 ≤ (3
· (𝑋↑2)) ↔
-(3 · (𝑋↑2))
≤ -3)) |
| 273 | 272 | biimpa 476 |
. . . . . . . . . 10
⊢ (((3
∈ ℝ ∧ (3 · (𝑋↑2)) ∈ ℝ) ∧ 3 ≤ (3
· (𝑋↑2)))
→ -(3 · (𝑋↑2)) ≤ -3) |
| 274 | 245, 247,
271, 273 | syl21anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -(3 · (𝑋↑2)) ≤
-3) |
| 275 | 244, 274 | eqbrtrd 5139 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-3 · (𝑋↑2)) ≤
-3) |
| 276 | 219, 220,
232, 224, 241, 275 | le2addd 11849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ≤ (-1 + -3)) |
| 277 | | 1cnd 11223 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → 1 ∈
ℂ) |
| 278 | 277, 242 | negdid 11600 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -(1 + 3) = (-1 +
-3)) |
| 279 | 277, 242 | addcomd 11430 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (1 + 3) = (3 +
1)) |
| 280 | | 3p1e4 12378 |
. . . . . . . . . 10
⊢ (3 + 1) =
4 |
| 281 | 279, 280 | eqtrdi 2785 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (1 + 3) =
4) |
| 282 | 281 | negeqd 11469 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -(1 + 3) =
-4) |
| 283 | 278, 282 | eqtr3d 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-1 + -3) =
-4) |
| 284 | 276, 283 | breqtrd 5143 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ≤ -4) |
| 285 | 226, 229,
221, 284 | leadd1dd 11844 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) ≤ (-4 +
1)) |
| 286 | 207 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (𝑋↑3) ∈ ℂ) |
| 287 | 209 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-3 · (𝑋↑2)) ∈
ℂ) |
| 288 | 286, 287,
277 | addassd 11250 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) = ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1))) |
| 289 | | ax-1cn 11180 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 290 | 91, 289 | negsubdii 11561 |
. . . . . . 7
⊢ -(4
− 1) = (-4 + 1) |
| 291 | | 4m1e3 12362 |
. . . . . . . 8
⊢ (4
− 1) = 3 |
| 292 | 291 | negeqi 11468 |
. . . . . . 7
⊢ -(4
− 1) = -3 |
| 293 | 290, 292 | eqtr3i 2759 |
. . . . . 6
⊢ (-4 + 1)
= -3 |
| 294 | 293 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → (-4 + 1) =
-3) |
| 295 | 285, 288,
294 | 3brtr3d 5148 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≤ -3) |
| 296 | 140 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → -3 < 0) |
| 297 | 223, 224,
225, 295, 296 | lelttrd 11386 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) < 0) |
| 298 | 297 | lt0ne0d 11795 |
. 2
⊢ ((𝜑 ∧ 𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |
| 299 | 218, 298,
231, 79 | ltlecasei 11336 |
1
⊢ (𝜑 → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) |