Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem1 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem1 33751
Description: The polynomial ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) has no integer roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Hypothesis
Ref Expression
cos9thpiminplylem1.1 (𝜑𝑋 ∈ ℤ)
Assertion
Ref Expression
cos9thpiminplylem1 (𝜑 → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)

Proof of Theorem cos9thpiminplylem1
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 ((𝜑𝑋 = 0) → 𝑋 = 0)
21oveq1d 7415 . . . . . . . . 9 ((𝜑𝑋 = 0) → (𝑋↑3) = (0↑3))
3 3nn 12312 . . . . . . . . . . 11 3 ∈ ℕ
43a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = 0) → 3 ∈ ℕ)
540expd 14147 . . . . . . . . 9 ((𝜑𝑋 = 0) → (0↑3) = 0)
62, 5eqtrd 2769 . . . . . . . 8 ((𝜑𝑋 = 0) → (𝑋↑3) = 0)
71oveq1d 7415 . . . . . . . . . . 11 ((𝜑𝑋 = 0) → (𝑋↑2) = (0↑2))
87oveq2d 7416 . . . . . . . . . 10 ((𝜑𝑋 = 0) → (-3 · (𝑋↑2)) = (-3 · (0↑2)))
9 2nn 12306 . . . . . . . . . . . . 13 2 ∈ ℕ
109a1i 11 . . . . . . . . . . . 12 ((𝜑𝑋 = 0) → 2 ∈ ℕ)
11100expd 14147 . . . . . . . . . . 11 ((𝜑𝑋 = 0) → (0↑2) = 0)
1211oveq2d 7416 . . . . . . . . . 10 ((𝜑𝑋 = 0) → (-3 · (0↑2)) = (-3 · 0))
13 3nn0 12512 . . . . . . . . . . . . . . 15 3 ∈ ℕ0
1413a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℕ0)
1514nn0cnd 12557 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℂ)
1615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 = 0) → 3 ∈ ℂ)
1716negcld 11574 . . . . . . . . . . 11 ((𝜑𝑋 = 0) → -3 ∈ ℂ)
1817mul01d 11427 . . . . . . . . . 10 ((𝜑𝑋 = 0) → (-3 · 0) = 0)
198, 12, 183eqtrd 2773 . . . . . . . . 9 ((𝜑𝑋 = 0) → (-3 · (𝑋↑2)) = 0)
2019oveq1d 7415 . . . . . . . 8 ((𝜑𝑋 = 0) → ((-3 · (𝑋↑2)) + 1) = (0 + 1))
216, 20oveq12d 7418 . . . . . . 7 ((𝜑𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (0 + (0 + 1)))
22 0cnd 11221 . . . . . . . . 9 ((𝜑𝑋 = 0) → 0 ∈ ℂ)
23 1cnd 11223 . . . . . . . . 9 ((𝜑𝑋 = 0) → 1 ∈ ℂ)
2422, 23addcld 11247 . . . . . . . 8 ((𝜑𝑋 = 0) → (0 + 1) ∈ ℂ)
2524addlidd 11429 . . . . . . 7 ((𝜑𝑋 = 0) → (0 + (0 + 1)) = (0 + 1))
26 1cnd 11223 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
2726addlidd 11429 . . . . . . . 8 (𝜑 → (0 + 1) = 1)
2827adantr 480 . . . . . . 7 ((𝜑𝑋 = 0) → (0 + 1) = 1)
2921, 25, 283eqtrd 2773 . . . . . 6 ((𝜑𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = 1)
30 ax-1ne0 11191 . . . . . . 7 1 ≠ 0
3130a1i 11 . . . . . 6 ((𝜑𝑋 = 0) → 1 ≠ 0)
3229, 31eqnetrd 2998 . . . . 5 ((𝜑𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
3332ad4ant14 752 . . . 4 ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
34 simpr 484 . . . . . . . . . 10 ((𝜑𝑋 = 1) → 𝑋 = 1)
3534oveq1d 7415 . . . . . . . . 9 ((𝜑𝑋 = 1) → (𝑋↑3) = (1↑3))
36 3z 12618 . . . . . . . . . 10 3 ∈ ℤ
37 1exp 14099 . . . . . . . . . 10 (3 ∈ ℤ → (1↑3) = 1)
3836, 37mp1i 13 . . . . . . . . 9 ((𝜑𝑋 = 1) → (1↑3) = 1)
3935, 38eqtrd 2769 . . . . . . . 8 ((𝜑𝑋 = 1) → (𝑋↑3) = 1)
4034oveq1d 7415 . . . . . . . . . . 11 ((𝜑𝑋 = 1) → (𝑋↑2) = (1↑2))
4140oveq2d 7416 . . . . . . . . . 10 ((𝜑𝑋 = 1) → (-3 · (𝑋↑2)) = (-3 · (1↑2)))
42 sq1 14203 . . . . . . . . . . . 12 (1↑2) = 1
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑋 = 1) → (1↑2) = 1)
4443oveq2d 7416 . . . . . . . . . 10 ((𝜑𝑋 = 1) → (-3 · (1↑2)) = (-3 · 1))
4515adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 = 1) → 3 ∈ ℂ)
4645negcld 11574 . . . . . . . . . . 11 ((𝜑𝑋 = 1) → -3 ∈ ℂ)
4746mulridd 11245 . . . . . . . . . 10 ((𝜑𝑋 = 1) → (-3 · 1) = -3)
4841, 44, 473eqtrd 2773 . . . . . . . . 9 ((𝜑𝑋 = 1) → (-3 · (𝑋↑2)) = -3)
4948oveq1d 7415 . . . . . . . 8 ((𝜑𝑋 = 1) → ((-3 · (𝑋↑2)) + 1) = (-3 + 1))
5039, 49oveq12d 7418 . . . . . . 7 ((𝜑𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (1 + (-3 + 1)))
51 1cnd 11223 . . . . . . . . . 10 ((𝜑𝑋 = 1) → 1 ∈ ℂ)
5246, 51addcomd 11430 . . . . . . . . 9 ((𝜑𝑋 = 1) → (-3 + 1) = (1 + -3))
5351, 45negsubd 11593 . . . . . . . . 9 ((𝜑𝑋 = 1) → (1 + -3) = (1 − 3))
5452, 53eqtrd 2769 . . . . . . . 8 ((𝜑𝑋 = 1) → (-3 + 1) = (1 − 3))
5554oveq2d 7416 . . . . . . 7 ((𝜑𝑋 = 1) → (1 + (-3 + 1)) = (1 + (1 − 3)))
56 1p1e2 12358 . . . . . . . . . 10 (1 + 1) = 2
5756a1i 11 . . . . . . . . 9 ((𝜑𝑋 = 1) → (1 + 1) = 2)
5857oveq1d 7415 . . . . . . . 8 ((𝜑𝑋 = 1) → ((1 + 1) − 3) = (2 − 3))
5951, 51, 45addsubassd 11607 . . . . . . . 8 ((𝜑𝑋 = 1) → ((1 + 1) − 3) = (1 + (1 − 3)))
60 2cnd 12311 . . . . . . . . . 10 ((𝜑𝑋 = 1) → 2 ∈ ℂ)
6145, 60negsubdi2d 11603 . . . . . . . . 9 ((𝜑𝑋 = 1) → -(3 − 2) = (2 − 3))
62 2p1e3 12375 . . . . . . . . . . . . 13 (2 + 1) = 3
6362a1i 11 . . . . . . . . . . . 12 ((𝜑𝑋 = 1) → (2 + 1) = 3)
6463eqcomd 2740 . . . . . . . . . . 11 ((𝜑𝑋 = 1) → 3 = (2 + 1))
6560, 51, 64mvrladdd 11643 . . . . . . . . . 10 ((𝜑𝑋 = 1) → (3 − 2) = 1)
6665negeqd 11469 . . . . . . . . 9 ((𝜑𝑋 = 1) → -(3 − 2) = -1)
6761, 66eqtr3d 2771 . . . . . . . 8 ((𝜑𝑋 = 1) → (2 − 3) = -1)
6858, 59, 673eqtr3d 2777 . . . . . . 7 ((𝜑𝑋 = 1) → (1 + (1 − 3)) = -1)
6950, 55, 683eqtrd 2773 . . . . . 6 ((𝜑𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = -1)
70 neg1ne0 12349 . . . . . . 7 -1 ≠ 0
7170a1i 11 . . . . . 6 ((𝜑𝑋 = 1) → -1 ≠ 0)
7269, 71eqnetrd 2998 . . . . 5 ((𝜑𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
7372ad4ant14 752 . . . 4 ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
74 oveq1 7407 . . . . . . . . . 10 (𝑋 = 2 → (𝑋↑3) = (2↑3))
7574adantl 481 . . . . . . . . 9 ((𝜑𝑋 = 2) → (𝑋↑3) = (2↑3))
76 cu2 14208 . . . . . . . . 9 (2↑3) = 8
7775, 76eqtrdi 2785 . . . . . . . 8 ((𝜑𝑋 = 2) → (𝑋↑3) = 8)
78 cos9thpiminplylem1.1 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℤ)
7978zred 12690 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
8079resqcld 14133 . . . . . . . . . . . . 13 (𝜑 → (𝑋↑2) ∈ ℝ)
8180recnd 11256 . . . . . . . . . . . 12 (𝜑 → (𝑋↑2) ∈ ℂ)
8215, 81mulneg1d 11683 . . . . . . . . . . 11 (𝜑 → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2)))
8382adantr 480 . . . . . . . . . 10 ((𝜑𝑋 = 2) → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2)))
84 oveq1 7407 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋↑2) = (2↑2))
8584adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑋 = 2) → (𝑋↑2) = (2↑2))
86 sq2 14205 . . . . . . . . . . . . 13 (2↑2) = 4
8785, 86eqtrdi 2785 . . . . . . . . . . . 12 ((𝜑𝑋 = 2) → (𝑋↑2) = 4)
8887oveq2d 7416 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → (3 · (𝑋↑2)) = (3 · 4))
8988negeqd 11469 . . . . . . . . . 10 ((𝜑𝑋 = 2) → -(3 · (𝑋↑2)) = -(3 · 4))
9015adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 = 2) → 3 ∈ ℂ)
91 4cn 12318 . . . . . . . . . . . . . 14 4 ∈ ℂ
9291a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑋 = 2) → 4 ∈ ℂ)
9390, 92mulcomd 11249 . . . . . . . . . . . 12 ((𝜑𝑋 = 2) → (3 · 4) = (4 · 3))
94 4t3e12 12799 . . . . . . . . . . . 12 (4 · 3) = 12
9593, 94eqtrdi 2785 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → (3 · 4) = 12)
9695negeqd 11469 . . . . . . . . . 10 ((𝜑𝑋 = 2) → -(3 · 4) = -12)
9783, 89, 963eqtrd 2773 . . . . . . . . 9 ((𝜑𝑋 = 2) → (-3 · (𝑋↑2)) = -12)
9897oveq1d 7415 . . . . . . . 8 ((𝜑𝑋 = 2) → ((-3 · (𝑋↑2)) + 1) = (-12 + 1))
9977, 98oveq12d 7418 . . . . . . 7 ((𝜑𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = (8 + (-12 + 1)))
100 1nn0 12510 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
101 2nn0 12511 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
102100, 101deccl 12716 . . . . . . . . . . . . . 14 12 ∈ ℕ0
103102a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑋 = 2) → 12 ∈ ℕ0)
104103nn0cnd 12557 . . . . . . . . . . . 12 ((𝜑𝑋 = 2) → 12 ∈ ℂ)
105104negcld 11574 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → -12 ∈ ℂ)
106 1cnd 11223 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → 1 ∈ ℂ)
107105, 106addcomd 11430 . . . . . . . . . 10 ((𝜑𝑋 = 2) → (-12 + 1) = (1 + -12))
108106, 104negsubd 11593 . . . . . . . . . 10 ((𝜑𝑋 = 2) → (1 + -12) = (1 − 12))
109107, 108eqtrd 2769 . . . . . . . . 9 ((𝜑𝑋 = 2) → (-12 + 1) = (1 − 12))
110104, 106negsubdi2d 11603 . . . . . . . . 9 ((𝜑𝑋 = 2) → -(12 − 1) = (1 − 12))
111100, 100deccl 12716 . . . . . . . . . . . . 13 11 ∈ ℕ0
112111a1i 11 . . . . . . . . . . . 12 ((𝜑𝑋 = 2) → 11 ∈ ℕ0)
113112nn0cnd 12557 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → 11 ∈ ℂ)
114106, 113addcomd 11430 . . . . . . . . . . . 12 ((𝜑𝑋 = 2) → (1 + 11) = (11 + 1))
115 eqid 2734 . . . . . . . . . . . . 13 11 = 11
116100, 100, 56, 115decsuc 12732 . . . . . . . . . . . 12 (11 + 1) = 12
117114, 116eqtr2di 2786 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → 12 = (1 + 11))
118106, 113, 117mvrladdd 11643 . . . . . . . . . 10 ((𝜑𝑋 = 2) → (12 − 1) = 11)
119118negeqd 11469 . . . . . . . . 9 ((𝜑𝑋 = 2) → -(12 − 1) = -11)
120109, 110, 1193eqtr2d 2775 . . . . . . . 8 ((𝜑𝑋 = 2) → (-12 + 1) = -11)
121120oveq2d 7416 . . . . . . 7 ((𝜑𝑋 = 2) → (8 + (-12 + 1)) = (8 + -11))
122 8nn0 12517 . . . . . . . . . . 11 8 ∈ ℕ0
123122a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = 2) → 8 ∈ ℕ0)
124123nn0cnd 12557 . . . . . . . . 9 ((𝜑𝑋 = 2) → 8 ∈ ℂ)
125124, 113negsubd 11593 . . . . . . . 8 ((𝜑𝑋 = 2) → (8 + -11) = (8 − 11))
126113, 124negsubdi2d 11603 . . . . . . . 8 ((𝜑𝑋 = 2) → -(11 − 8) = (8 − 11))
127 8p3e11 12782 . . . . . . . . . . . 12 (8 + 3) = 11
128127a1i 11 . . . . . . . . . . 11 ((𝜑𝑋 = 2) → (8 + 3) = 11)
129128eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑋 = 2) → 11 = (8 + 3))
130124, 90, 129mvrladdd 11643 . . . . . . . . 9 ((𝜑𝑋 = 2) → (11 − 8) = 3)
131130negeqd 11469 . . . . . . . 8 ((𝜑𝑋 = 2) → -(11 − 8) = -3)
132125, 126, 1313eqtr2d 2775 . . . . . . 7 ((𝜑𝑋 = 2) → (8 + -11) = -3)
13399, 121, 1323eqtrd 2773 . . . . . 6 ((𝜑𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) = -3)
134 0red 11231 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
13514nn0red 12556 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
136 neg0 11522 . . . . . . . . . . 11 -0 = 0
137136a1i 11 . . . . . . . . . 10 (𝜑 → -0 = 0)
138 3pos 12338 . . . . . . . . . 10 0 < 3
139137, 138eqbrtrdi 5156 . . . . . . . . 9 (𝜑 → -0 < 3)
140134, 135, 139ltnegcon1d 11810 . . . . . . . 8 (𝜑 → -3 < 0)
141140adantr 480 . . . . . . 7 ((𝜑𝑋 = 2) → -3 < 0)
142141lt0ne0d 11795 . . . . . 6 ((𝜑𝑋 = 2) → -3 ≠ 0)
143133, 142eqnetrd 2998 . . . . 5 ((𝜑𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
144143ad4ant14 752 . . . 4 ((((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) ∧ 𝑋 = 2) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
14578ad2antrr 726 . . . . 5 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ ℤ)
146 0zd 12593 . . . . . . 7 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 0 ∈ ℤ)
14736a1i 11 . . . . . . 7 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 3 ∈ ℤ)
148 df-neg 11462 . . . . . . . . 9 -1 = (0 − 1)
149 simplr 768 . . . . . . . . 9 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → -1 < 𝑋)
150148, 149eqbrtrrid 5153 . . . . . . . 8 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → (0 − 1) < 𝑋)
151 zlem1lt 12637 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0 ≤ 𝑋 ↔ (0 − 1) < 𝑋))
152151biimpar 477 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑋 ∈ ℤ) ∧ (0 − 1) < 𝑋) → 0 ≤ 𝑋)
153146, 145, 150, 152syl21anc 837 . . . . . . 7 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 0 ≤ 𝑋)
154 simpr 484 . . . . . . 7 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 < 3)
155 elfzo 13668 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑋 ∈ (0..^3) ↔ (0 ≤ 𝑋𝑋 < 3)))
156155biimpar 477 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (0 ≤ 𝑋𝑋 < 3)) → 𝑋 ∈ (0..^3))
157145, 146, 147, 153, 154, 156syl32anc 1379 . . . . . 6 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ (0..^3))
158 fzo0to3tp 13758 . . . . . 6 (0..^3) = {0, 1, 2}
159157, 158eleqtrdi 2843 . . . . 5 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → 𝑋 ∈ {0, 1, 2})
160 eltpg 4660 . . . . . 6 (𝑋 ∈ ℤ → (𝑋 ∈ {0, 1, 2} ↔ (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2)))
161160biimpa 476 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ∈ {0, 1, 2}) → (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2))
162145, 159, 161syl2anc 584 . . . 4 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → (𝑋 = 0 ∨ 𝑋 = 1 ∨ 𝑋 = 2))
16333, 73, 144, 162mpjao3dan 1433 . . 3 (((𝜑 ∧ -1 < 𝑋) ∧ 𝑋 < 3) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
16478, 14zexpcld 14095 . . . . . . . . . 10 (𝜑 → (𝑋↑3) ∈ ℤ)
165164zred 12690 . . . . . . . . 9 (𝜑 → (𝑋↑3) ∈ ℝ)
166135renegcld 11657 . . . . . . . . . 10 (𝜑 → -3 ∈ ℝ)
167166, 80remulcld 11258 . . . . . . . . 9 (𝜑 → (-3 · (𝑋↑2)) ∈ ℝ)
168165, 167readdcld 11257 . . . . . . . 8 (𝜑 → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ)
169168adantr 480 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ)
170 1red 11229 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → 1 ∈ ℝ)
17180adantr 480 . . . . . . . . 9 ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋↑2) ∈ ℝ)
17279, 135resubcld 11658 . . . . . . . . . 10 (𝜑 → (𝑋 − 3) ∈ ℝ)
173172adantr 480 . . . . . . . . 9 ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋 − 3) ∈ ℝ)
17479adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 3 ≤ 𝑋) → 𝑋 ∈ ℝ)
175174sqge0d 14145 . . . . . . . . 9 ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ (𝑋↑2))
176135adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 3 ≤ 𝑋) → 3 ∈ ℝ)
177 0red 11231 . . . . . . . . . 10 ((𝜑 ∧ 3 ≤ 𝑋) → 0 ∈ ℝ)
178 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ 3 ≤ 𝑋) → 3 ≤ 𝑋)
17979recnd 11256 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
180179subid1d 11576 . . . . . . . . . . . 12 (𝜑 → (𝑋 − 0) = 𝑋)
181180adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋 − 0) = 𝑋)
182178, 181breqtrrd 5145 . . . . . . . . . 10 ((𝜑 ∧ 3 ≤ 𝑋) → 3 ≤ (𝑋 − 0))
183176, 174, 177, 182lesubd 11834 . . . . . . . . 9 ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ (𝑋 − 3))
184171, 173, 175, 183mulge0d 11807 . . . . . . . 8 ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ ((𝑋↑2) · (𝑋 − 3)))
18581, 179, 15subdid 11686 . . . . . . . . . 10 (𝜑 → ((𝑋↑2) · (𝑋 − 3)) = (((𝑋↑2) · 𝑋) − ((𝑋↑2) · 3)))
18681, 179mulcld 11248 . . . . . . . . . . 11 (𝜑 → ((𝑋↑2) · 𝑋) ∈ ℂ)
18781, 15mulcld 11248 . . . . . . . . . . 11 (𝜑 → ((𝑋↑2) · 3) ∈ ℂ)
188186, 187negsubd 11593 . . . . . . . . . 10 (𝜑 → (((𝑋↑2) · 𝑋) + -((𝑋↑2) · 3)) = (((𝑋↑2) · 𝑋) − ((𝑋↑2) · 3)))
189100a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ0)
190101a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
191179, 189, 190expaddd 14156 . . . . . . . . . . . 12 (𝜑 → (𝑋↑(2 + 1)) = ((𝑋↑2) · (𝑋↑1)))
19262a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 + 1) = 3)
193192oveq2d 7416 . . . . . . . . . . . 12 (𝜑 → (𝑋↑(2 + 1)) = (𝑋↑3))
194179exp1d 14149 . . . . . . . . . . . . 13 (𝜑 → (𝑋↑1) = 𝑋)
195194oveq2d 7416 . . . . . . . . . . . 12 (𝜑 → ((𝑋↑2) · (𝑋↑1)) = ((𝑋↑2) · 𝑋))
196191, 193, 1953eqtr3rd 2778 . . . . . . . . . . 11 (𝜑 → ((𝑋↑2) · 𝑋) = (𝑋↑3))
19781, 15mulcomd 11249 . . . . . . . . . . . . 13 (𝜑 → ((𝑋↑2) · 3) = (3 · (𝑋↑2)))
198197negeqd 11469 . . . . . . . . . . . 12 (𝜑 → -((𝑋↑2) · 3) = -(3 · (𝑋↑2)))
199198, 82eqtr4d 2772 . . . . . . . . . . 11 (𝜑 → -((𝑋↑2) · 3) = (-3 · (𝑋↑2)))
200196, 199oveq12d 7418 . . . . . . . . . 10 (𝜑 → (((𝑋↑2) · 𝑋) + -((𝑋↑2) · 3)) = ((𝑋↑3) + (-3 · (𝑋↑2))))
201185, 188, 2003eqtr2d 2775 . . . . . . . . 9 (𝜑 → ((𝑋↑2) · (𝑋 − 3)) = ((𝑋↑3) + (-3 · (𝑋↑2))))
202201adantr 480 . . . . . . . 8 ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑2) · (𝑋 − 3)) = ((𝑋↑3) + (-3 · (𝑋↑2))))
203184, 202breqtrd 5143 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → 0 ≤ ((𝑋↑3) + (-3 · (𝑋↑2))))
204 0lt1 11752 . . . . . . . 8 0 < 1
205204a1i 11 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → 0 < 1)
206169, 170, 203, 205addgegt0d 11803 . . . . . 6 ((𝜑 ∧ 3 ≤ 𝑋) → 0 < (((𝑋↑3) + (-3 · (𝑋↑2))) + 1))
207165recnd 11256 . . . . . . . 8 (𝜑 → (𝑋↑3) ∈ ℂ)
208207adantr 480 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → (𝑋↑3) ∈ ℂ)
209167recnd 11256 . . . . . . . 8 (𝜑 → (-3 · (𝑋↑2)) ∈ ℂ)
210209adantr 480 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → (-3 · (𝑋↑2)) ∈ ℂ)
211 1cnd 11223 . . . . . . 7 ((𝜑 ∧ 3 ≤ 𝑋) → 1 ∈ ℂ)
212208, 210, 211addassd 11250 . . . . . 6 ((𝜑 ∧ 3 ≤ 𝑋) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) = ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)))
213206, 212breqtrd 5143 . . . . 5 ((𝜑 ∧ 3 ≤ 𝑋) → 0 < ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)))
214213gt0ne0d 11794 . . . 4 ((𝜑 ∧ 3 ≤ 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
215214adantlr 715 . . 3 (((𝜑 ∧ -1 < 𝑋) ∧ 3 ≤ 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
21679adantr 480 . . 3 ((𝜑 ∧ -1 < 𝑋) → 𝑋 ∈ ℝ)
217135adantr 480 . . 3 ((𝜑 ∧ -1 < 𝑋) → 3 ∈ ℝ)
218163, 215, 216, 217ltlecasei 11336 . 2 ((𝜑 ∧ -1 < 𝑋) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
219165adantr 480 . . . . 5 ((𝜑𝑋 ≤ -1) → (𝑋↑3) ∈ ℝ)
220167adantr 480 . . . . . 6 ((𝜑𝑋 ≤ -1) → (-3 · (𝑋↑2)) ∈ ℝ)
221 1red 11229 . . . . . 6 ((𝜑𝑋 ≤ -1) → 1 ∈ ℝ)
222220, 221readdcld 11257 . . . . 5 ((𝜑𝑋 ≤ -1) → ((-3 · (𝑋↑2)) + 1) ∈ ℝ)
223219, 222readdcld 11257 . . . 4 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ∈ ℝ)
224166adantr 480 . . . 4 ((𝜑𝑋 ≤ -1) → -3 ∈ ℝ)
225 0red 11231 . . . 4 ((𝜑𝑋 ≤ -1) → 0 ∈ ℝ)
226219, 220readdcld 11257 . . . . . 6 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ∈ ℝ)
227 4re 12317 . . . . . . . 8 4 ∈ ℝ
228227a1i 11 . . . . . . 7 ((𝜑𝑋 ≤ -1) → 4 ∈ ℝ)
229228renegcld 11657 . . . . . 6 ((𝜑𝑋 ≤ -1) → -4 ∈ ℝ)
230 1red 11229 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
231230renegcld 11657 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
232231adantr 480 . . . . . . . 8 ((𝜑𝑋 ≤ -1) → -1 ∈ ℝ)
23379adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 𝑋 ∈ ℝ)
2343a1i 11 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 3 ∈ ℕ)
235 n2dvds3 16377 . . . . . . . . . . 11 ¬ 2 ∥ 3
236235a1i 11 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → ¬ 2 ∥ 3)
237 simpr 484 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 𝑋 ≤ -1)
238233, 232, 234, 236, 237oexpled 32763 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → (𝑋↑3) ≤ (-1↑3))
239 m1expo 16381 . . . . . . . . . 10 ((3 ∈ ℤ ∧ ¬ 2 ∥ 3) → (-1↑3) = -1)
24036, 236, 239sylancr 587 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → (-1↑3) = -1)
241238, 240breqtrd 5143 . . . . . . . 8 ((𝜑𝑋 ≤ -1) → (𝑋↑3) ≤ -1)
242234nncnd 12249 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 3 ∈ ℂ)
24381adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → (𝑋↑2) ∈ ℂ)
244242, 243mulneg1d 11683 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → (-3 · (𝑋↑2)) = -(3 · (𝑋↑2)))
245135adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 3 ∈ ℝ)
246135, 80remulcld 11258 . . . . . . . . . . 11 (𝜑 → (3 · (𝑋↑2)) ∈ ℝ)
247246adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → (3 · (𝑋↑2)) ∈ ℝ)
24880adantr 480 . . . . . . . . . . 11 ((𝜑𝑋 ≤ -1) → (𝑋↑2) ∈ ℝ)
24913nn0ge0i 12521 . . . . . . . . . . . 12 0 ≤ 3
250249a1i 11 . . . . . . . . . . 11 ((𝜑𝑋 ≤ -1) → 0 ≤ 3)
251233, 221, 237lenegcon2d 11813 . . . . . . . . . . . . . 14 ((𝜑𝑋 ≤ -1) → 1 ≤ -𝑋)
252233renegcld 11657 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ≤ -1) → -𝑋 ∈ ℝ)
253 0le1 11753 . . . . . . . . . . . . . . . 16 0 ≤ 1
254253a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ≤ -1) → 0 ≤ 1)
255 neg1rr 12348 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℝ
256 0re 11230 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
257 neg1lt0 12350 . . . . . . . . . . . . . . . . . . . 20 -1 < 0
258255, 256, 257ltleii 11351 . . . . . . . . . . . . . . . . . . 19 -1 ≤ 0
259258a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ≤ -1) → -1 ≤ 0)
260233, 232, 225, 237, 259letrd 11385 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ≤ -1) → 𝑋 ≤ 0)
261 leneg 11733 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑋 ≤ 0 ↔ -0 ≤ -𝑋))
262261biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℝ ∧ 0 ∈ ℝ) ∧ 𝑋 ≤ 0) → -0 ≤ -𝑋)
263233, 225, 260, 262syl21anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ≤ -1) → -0 ≤ -𝑋)
264136, 263eqbrtrrid 5153 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ≤ -1) → 0 ≤ -𝑋)
265221, 252, 254, 264le2sqd 14265 . . . . . . . . . . . . . 14 ((𝜑𝑋 ≤ -1) → (1 ≤ -𝑋 ↔ (1↑2) ≤ (-𝑋↑2)))
266251, 265mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑋 ≤ -1) → (1↑2) ≤ (-𝑋↑2))
267233recnd 11256 . . . . . . . . . . . . . 14 ((𝜑𝑋 ≤ -1) → 𝑋 ∈ ℂ)
268267sqnegd 14124 . . . . . . . . . . . . 13 ((𝜑𝑋 ≤ -1) → (-𝑋↑2) = (𝑋↑2))
269266, 268breqtrd 5143 . . . . . . . . . . . 12 ((𝜑𝑋 ≤ -1) → (1↑2) ≤ (𝑋↑2))
27042, 269eqbrtrrid 5153 . . . . . . . . . . 11 ((𝜑𝑋 ≤ -1) → 1 ≤ (𝑋↑2))
271245, 248, 250, 270lemulge11d 12172 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → 3 ≤ (3 · (𝑋↑2)))
272 leneg 11733 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ (3 · (𝑋↑2)) ∈ ℝ) → (3 ≤ (3 · (𝑋↑2)) ↔ -(3 · (𝑋↑2)) ≤ -3))
273272biimpa 476 . . . . . . . . . 10 (((3 ∈ ℝ ∧ (3 · (𝑋↑2)) ∈ ℝ) ∧ 3 ≤ (3 · (𝑋↑2))) → -(3 · (𝑋↑2)) ≤ -3)
274245, 247, 271, 273syl21anc 837 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → -(3 · (𝑋↑2)) ≤ -3)
275244, 274eqbrtrd 5139 . . . . . . . 8 ((𝜑𝑋 ≤ -1) → (-3 · (𝑋↑2)) ≤ -3)
276219, 220, 232, 224, 241, 275le2addd 11849 . . . . . . 7 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ≤ (-1 + -3))
277 1cnd 11223 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → 1 ∈ ℂ)
278277, 242negdid 11600 . . . . . . . 8 ((𝜑𝑋 ≤ -1) → -(1 + 3) = (-1 + -3))
279277, 242addcomd 11430 . . . . . . . . . 10 ((𝜑𝑋 ≤ -1) → (1 + 3) = (3 + 1))
280 3p1e4 12378 . . . . . . . . . 10 (3 + 1) = 4
281279, 280eqtrdi 2785 . . . . . . . . 9 ((𝜑𝑋 ≤ -1) → (1 + 3) = 4)
282281negeqd 11469 . . . . . . . 8 ((𝜑𝑋 ≤ -1) → -(1 + 3) = -4)
283278, 282eqtr3d 2771 . . . . . . 7 ((𝜑𝑋 ≤ -1) → (-1 + -3) = -4)
284276, 283breqtrd 5143 . . . . . 6 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + (-3 · (𝑋↑2))) ≤ -4)
285226, 229, 221, 284leadd1dd 11844 . . . . 5 ((𝜑𝑋 ≤ -1) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) ≤ (-4 + 1))
286207adantr 480 . . . . . 6 ((𝜑𝑋 ≤ -1) → (𝑋↑3) ∈ ℂ)
287209adantr 480 . . . . . 6 ((𝜑𝑋 ≤ -1) → (-3 · (𝑋↑2)) ∈ ℂ)
288286, 287, 277addassd 11250 . . . . 5 ((𝜑𝑋 ≤ -1) → (((𝑋↑3) + (-3 · (𝑋↑2))) + 1) = ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)))
289 ax-1cn 11180 . . . . . . . 8 1 ∈ ℂ
29091, 289negsubdii 11561 . . . . . . 7 -(4 − 1) = (-4 + 1)
291 4m1e3 12362 . . . . . . . 8 (4 − 1) = 3
292291negeqi 11468 . . . . . . 7 -(4 − 1) = -3
293290, 292eqtr3i 2759 . . . . . 6 (-4 + 1) = -3
294293a1i 11 . . . . 5 ((𝜑𝑋 ≤ -1) → (-4 + 1) = -3)
295285, 288, 2943brtr3d 5148 . . . 4 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≤ -3)
296140adantr 480 . . . 4 ((𝜑𝑋 ≤ -1) → -3 < 0)
297223, 224, 225, 295, 296lelttrd 11386 . . 3 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) < 0)
298297lt0ne0d 11795 . 2 ((𝜑𝑋 ≤ -1) → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
299218, 298, 231, 79ltlecasei 11336 1 (𝜑 → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  {ctp 4603   class class class wbr 5117  (class class class)co 7400  cc 11120  cr 11121  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127   < clt 11262  cle 11263  cmin 11459  -cneg 11460  cn 12233  2c2 12288  3c3 12289  4c4 12290  8c8 12294  0cn0 12494  cz 12581  cdc 12701  ..^cfzo 13661  cexp 14069  cdvds 16259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-dvds 16260
This theorem is referenced by:  cos9thpiminplylem2  33752
  Copyright terms: Public domain W3C validator