HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjeq Structured version   Visualization version   GIF version

Theorem pjeq 28599
Description: Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjeq ((𝐻C𝐴 ∈ ℋ) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjeq
StepHypRef Expression
1 pjhth 28593 . . . 4 (𝐻C → (𝐻 + (⊥‘𝐻)) = ℋ)
21eleq2d 2836 . . 3 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ))
32biimpar 463 . 2 ((𝐻C𝐴 ∈ ℋ) → 𝐴 ∈ (𝐻 + (⊥‘𝐻)))
4 pjpreeq 28598 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
53, 4syldan 573 1 ((𝐻C𝐴 ∈ ℋ) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wrex 3062  cfv 6032  (class class class)co 6794  chil 28117   + cva 28118   C cch 28127  cort 28128   + cph 28129  projcpjh 28135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cc 9460  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-addf 10218  ax-mulf 10219  ax-hilex 28197  ax-hfvadd 28198  ax-hvcom 28199  ax-hvass 28200  ax-hv0cl 28201  ax-hvaddid 28202  ax-hfvmul 28203  ax-hvmulid 28204  ax-hvmulass 28205  ax-hvdistr1 28206  ax-hvdistr2 28207  ax-hvmul0 28208  ax-hfi 28277  ax-his1 28280  ax-his2 28281  ax-his3 28282  ax-his4 28283  ax-hcompl 28400
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-omul 7719  df-er 7897  df-map 8012  df-pm 8013  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8966  df-acn 8969  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-n0 11496  df-z 11581  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-ico 12387  df-icc 12388  df-fz 12535  df-fl 12802  df-seq 13010  df-exp 13069  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-clim 14428  df-rlim 14429  df-rest 16292  df-topgen 16313  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-fbas 19959  df-fg 19960  df-top 20920  df-topon 20937  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lm 21255  df-haus 21341  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-cfil 23273  df-cau 23274  df-cmet 23275  df-grpo 27688  df-gid 27689  df-ginv 27690  df-gdiv 27691  df-ablo 27740  df-vc 27755  df-nv 27788  df-va 27791  df-ba 27792  df-sm 27793  df-0v 27794  df-vs 27795  df-nmcv 27796  df-ims 27797  df-ssp 27918  df-ph 28009  df-cbn 28060  df-hnorm 28166  df-hba 28167  df-hvsub 28169  df-hlim 28170  df-hcau 28171  df-sh 28405  df-ch 28419  df-oc 28450  df-ch0 28451  df-shs 28508  df-pjh 28595
This theorem is referenced by:  axpjcl  28600  pjspansn  28777  pjimai  29376
  Copyright terms: Public domain W3C validator