![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjeq | Structured version Visualization version GIF version |
Description: Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjeq | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth 28593 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | |
2 | 1 | eleq2d 2836 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ)) |
3 | 2 | biimpar 463 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) |
4 | pjpreeq 28598 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | |
5 | 3, 4 | syldan 573 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 ‘cfv 6032 (class class class)co 6794 ℋchil 28117 +ℎ cva 28118 Cℋ cch 28127 ⊥cort 28128 +ℋ cph 28129 projℎcpjh 28135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-inf2 8703 ax-cc 9460 ax-cnex 10195 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 ax-pre-sup 10217 ax-addf 10218 ax-mulf 10219 ax-hilex 28197 ax-hfvadd 28198 ax-hvcom 28199 ax-hvass 28200 ax-hv0cl 28201 ax-hvaddid 28202 ax-hfvmul 28203 ax-hvmulid 28204 ax-hvmulass 28205 ax-hvdistr1 28206 ax-hvdistr2 28207 ax-hvmul0 28208 ax-hfi 28277 ax-his1 28280 ax-his2 28281 ax-his3 28282 ax-his4 28283 ax-hcompl 28400 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-isom 6041 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-1st 7316 df-2nd 7317 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-1o 7714 df-oadd 7718 df-omul 7719 df-er 7897 df-map 8012 df-pm 8013 df-en 8111 df-dom 8112 df-sdom 8113 df-fin 8114 df-fi 8474 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8966 df-acn 8969 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-div 10888 df-nn 11224 df-2 11282 df-3 11283 df-4 11284 df-n0 11496 df-z 11581 df-uz 11890 df-q 11993 df-rp 12037 df-xneg 12152 df-xadd 12153 df-xmul 12154 df-ico 12387 df-icc 12388 df-fz 12535 df-fl 12802 df-seq 13010 df-exp 13069 df-cj 14048 df-re 14049 df-im 14050 df-sqrt 14184 df-abs 14185 df-clim 14428 df-rlim 14429 df-rest 16292 df-topgen 16313 df-psmet 19954 df-xmet 19955 df-met 19956 df-bl 19957 df-mopn 19958 df-fbas 19959 df-fg 19960 df-top 20920 df-topon 20937 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lm 21255 df-haus 21341 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-cfil 23273 df-cau 23274 df-cmet 23275 df-grpo 27688 df-gid 27689 df-ginv 27690 df-gdiv 27691 df-ablo 27740 df-vc 27755 df-nv 27788 df-va 27791 df-ba 27792 df-sm 27793 df-0v 27794 df-vs 27795 df-nmcv 27796 df-ims 27797 df-ssp 27918 df-ph 28009 df-cbn 28060 df-hnorm 28166 df-hba 28167 df-hvsub 28169 df-hlim 28170 df-hcau 28171 df-sh 28405 df-ch 28419 df-oc 28450 df-ch0 28451 df-shs 28508 df-pjh 28595 |
This theorem is referenced by: axpjcl 28600 pjspansn 28777 pjimai 29376 |
Copyright terms: Public domain | W3C validator |