MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsexpr Structured version   Visualization version   GIF version

Theorem prmdvdsexpr 16665
Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
prmdvdsexpr ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))

Proof of Theorem prmdvdsexpr
StepHypRef Expression
1 elnn0 12423 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 prmdvdsexpb 16664 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
32biimpd 229 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))
433expia 1121 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
5 prmnn 16622 . . . . . . . . . 10 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
65adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℕ)
76nncnd 12181 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ)
87exp0d 14084 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄↑0) = 1)
98breq2d 5114 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) ↔ 𝑃 ∥ 1))
10 nprmdvds1 16654 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
1110pm2.21d 121 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 = 𝑄))
1211adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 1 → 𝑃 = 𝑄))
139, 12sylbid 240 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄))
14 oveq2 7378 . . . . . . 7 (𝑁 = 0 → (𝑄𝑁) = (𝑄↑0))
1514breq2d 5114 . . . . . 6 (𝑁 = 0 → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 ∥ (𝑄↑0)))
1615imbi1d 341 . . . . 5 (𝑁 = 0 → ((𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄) ↔ (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄)))
1713, 16syl5ibrcom 247 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = 0 → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
184, 17jaod 859 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
191, 18biimtrid 242 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ0 → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
20193impia 1117 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7370  0cc0 11047  1c1 11048  cn 12165  0cn0 12421  cexp 14005  cdvds 16200  cprime 16619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-sup 9370  df-inf 9371  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-z 12509  df-uz 12773  df-rp 12931  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16201  df-gcd 16443  df-prm 16620
This theorem is referenced by:  pcprmpw2  16831  pcmpt  16841  pgpfi  19521  ablfac1eulem  19990  isppw2  27060  2sqr3nconstr  33766  cos9thpinconstrlem2  33775  aks6d1c2p2  42102
  Copyright terms: Public domain W3C validator