| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmdvdsexpr | Structured version Visualization version GIF version | ||
| Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prmdvdsexpr | ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12422 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | prmdvdsexpb 16663 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
| 3 | 2 | biimpd 229 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
| 4 | 3 | 3expia 1121 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
| 5 | prmnn 16621 | . . . . . . . . . 10 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℕ) | |
| 6 | 5 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℕ) |
| 7 | 6 | nncnd 12180 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ) |
| 8 | 7 | exp0d 14083 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄↑0) = 1) |
| 9 | 8 | breq2d 5114 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) ↔ 𝑃 ∥ 1)) |
| 10 | nprmdvds1 16653 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | |
| 11 | 10 | pm2.21d 121 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
| 13 | 9, 12 | sylbid 240 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄)) |
| 14 | oveq2 7377 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑄↑𝑁) = (𝑄↑0)) | |
| 15 | 14 | breq2d 5114 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 ∥ (𝑄↑0))) |
| 16 | 15 | imbi1d 341 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄) ↔ (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄))) |
| 17 | 13, 16 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
| 18 | 4, 17 | jaod 859 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
| 19 | 1, 18 | biimtrid 242 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
| 20 | 19 | 3impia 1117 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 0cc0 11046 1c1 11047 ℕcn 12164 ℕ0cn0 12420 ↑cexp 14004 ∥ cdvds 16199 ℙcprime 16618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-fl 13732 df-mod 13810 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16200 df-gcd 16442 df-prm 16619 |
| This theorem is referenced by: pcprmpw2 16830 pcmpt 16840 pgpfi 19520 ablfac1eulem 19989 isppw2 27059 2sqr3nconstr 33765 cos9thpinconstrlem2 33774 aks6d1c2p2 42101 |
| Copyright terms: Public domain | W3C validator |