| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmpsrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rhmpsr 42535 et al. (Contributed by SN, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| rhmpsrlem1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| rhmpsrlem1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rhmpsrlem1.x | ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| rhmpsrlem1.y | ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| Ref | Expression |
|---|---|
| rhmpsrlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | rhmpsrlem1.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | 3 | ringcmnd 20169 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 6 | rhmpsrlem1.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | 6 | psrbaglefi 21833 | . . 3 ⊢ (𝑘 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
| 9 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 3 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 11 | rhmpsrlem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) | |
| 12 | 11 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 13 | breq1 5095 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ 𝑘)) | |
| 14 | 13 | elrab 3648 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↔ (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 15 | 14 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} → (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 17 | 16 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
| 18 | 12, 17 | ffvelcdmd 7019 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 19 | rhmpsrlem1.y | . . . . . 6 ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) | |
| 20 | 19 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 21 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) | |
| 22 | 6 | psrbagf 21825 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥:𝐼⟶ℕ0) |
| 23 | 17, 22 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥:𝐼⟶ℕ0) |
| 24 | 16 | simprd 495 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∘r ≤ 𝑘) |
| 25 | 6 | psrbagcon 21832 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐷 ∧ 𝑥:𝐼⟶ℕ0 ∧ 𝑥 ∘r ≤ 𝑘) → ((𝑘 ∘f − 𝑥) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑥) ∘r ≤ 𝑘)) |
| 26 | 21, 23, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑥) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑥) ∘r ≤ 𝑘)) |
| 27 | 26 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ 𝐷) |
| 28 | 20, 27 | ffvelcdmd 7019 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
| 29 | 1, 9, 10, 18, 28 | ringcld 20145 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
| 30 | 29 | fmpttd 7049 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))):{𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}⟶(Base‘𝑅)) |
| 31 | 6, 3, 11, 19 | rhmpsrlem1 21847 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp (0g‘𝑅)) |
| 32 | 1, 2, 5, 8, 30, 31 | gsumcl 19794 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 ∘r cofr 7612 ↑m cmap 8753 Fincfn 8872 ≤ cle 11150 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Σg cgsu 17344 CMndccmn 19659 Ringcrg 20118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 |
| This theorem is referenced by: psrmulcllem 21852 rhmcomulmpl 22267 rhmcomulpsr 42534 |
| Copyright terms: Public domain | W3C validator |