| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmpsrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rhmpsr 42655 et al. (Contributed by SN, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| rhmpsrlem1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| rhmpsrlem1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rhmpsrlem1.x | ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| rhmpsrlem1.y | ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| Ref | Expression |
|---|---|
| rhmpsrlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | rhmpsrlem1.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | 3 | ringcmnd 20202 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 6 | rhmpsrlem1.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | 6 | psrbaglefi 21863 | . . 3 ⊢ (𝑘 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
| 9 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 3 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 11 | rhmpsrlem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) | |
| 12 | 11 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 13 | breq1 5092 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ 𝑘)) | |
| 14 | 13 | elrab 3642 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↔ (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 15 | 14 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} → (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘)) |
| 17 | 16 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
| 18 | 12, 17 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 19 | rhmpsrlem1.y | . . . . . 6 ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) | |
| 20 | 19 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 21 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) | |
| 22 | 6 | psrbagf 21855 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥:𝐼⟶ℕ0) |
| 23 | 17, 22 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥:𝐼⟶ℕ0) |
| 24 | 16 | simprd 495 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∘r ≤ 𝑘) |
| 25 | 6 | psrbagcon 21862 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐷 ∧ 𝑥:𝐼⟶ℕ0 ∧ 𝑥 ∘r ≤ 𝑘) → ((𝑘 ∘f − 𝑥) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑥) ∘r ≤ 𝑘)) |
| 26 | 21, 23, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑥) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑥) ∘r ≤ 𝑘)) |
| 27 | 26 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ 𝐷) |
| 28 | 20, 27 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
| 29 | 1, 9, 10, 18, 28 | ringcld 20178 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
| 30 | 29 | fmpttd 7048 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))):{𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}⟶(Base‘𝑅)) |
| 31 | 6, 3, 11, 19 | rhmpsrlem1 21877 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp (0g‘𝑅)) |
| 32 | 1, 2, 5, 8, 30, 31 | gsumcl 19827 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ∘r cofr 7609 ↑m cmap 8750 Fincfn 8869 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Σg cgsu 17344 CMndccmn 19692 Ringcrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 |
| This theorem is referenced by: psrmulcllem 21882 rhmcomulmpl 22297 rhmcomulpsr 42654 |
| Copyright terms: Public domain | W3C validator |