![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pythagtriplem8 | Structured version Visualization version GIF version |
Description: Lemma for pythagtrip 15869. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem8 | ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem6 15856 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) | |
2 | nnz 11685 | . . . . . 6 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℤ) | |
3 | nnz 11685 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
4 | zsubcl 11705 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 − 𝐵) ∈ ℤ) | |
5 | 2, 3, 4 | syl2anr 591 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
6 | 5 | 3adant1 1161 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
7 | nnz 11685 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
8 | 7 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ) |
9 | nnne0 11347 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
10 | 9 | neneqd 2974 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 = 0) |
11 | 10 | intnand 483 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) |
12 | 11 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) |
13 | gcdn0cl 15556 | . . . 4 ⊢ ((((𝐶 − 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) | |
14 | 6, 8, 12, 13 | syl21anc 867 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) |
15 | 14 | 3ad2ant1 1164 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) |
16 | 1, 15 | eqeltrd 2876 | 1 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 0cc0 10222 1c1 10223 + caddc 10225 − cmin 10554 ℕcn 11310 2c2 11364 ℤcz 11662 ↑cexp 13110 √csqrt 14311 ∥ cdvds 15316 gcd cgcd 15548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-fz 12577 df-fl 12844 df-mod 12920 df-seq 13052 df-exp 13111 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-dvds 15317 df-gcd 15549 df-prm 15717 |
This theorem is referenced by: pythagtriplem11 15860 pythagtriplem13 15862 |
Copyright terms: Public domain | W3C validator |