![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusmulrng | Structured version Visualization version GIF version |
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 21138. Similar to qusmul2 21134. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
Ref | Expression |
---|---|
qusmulrng.e | β’ βΌ = (π ~QG π) |
qusmulrng.h | β’ π» = (π /s βΌ ) |
qusmulrng.b | β’ π΅ = (Baseβπ ) |
qusmulrng.p | β’ Β· = (.rβπ ) |
qusmulrng.a | β’ β = (.rβπ») |
Ref | Expression |
---|---|
qusmulrng | β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ (π β π΅ β§ π β π΅)) β ([π] βΌ β [π] βΌ ) = [(π Β· π)] βΌ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmulrng.h | . . . 4 β’ π» = (π /s βΌ ) | |
2 | 1 | a1i 11 | . . 3 β’ ((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β π» = (π /s βΌ )) |
3 | qusmulrng.b | . . . 4 β’ π΅ = (Baseβπ ) | |
4 | 3 | a1i 11 | . . 3 β’ ((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β π΅ = (Baseβπ )) |
5 | qusmulrng.e | . . . . 5 β’ βΌ = (π ~QG π) | |
6 | 3, 5 | eqger 19105 | . . . 4 β’ (π β (SubGrpβπ ) β βΌ Er π΅) |
7 | 6 | 3ad2ant3 1132 | . . 3 β’ ((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β βΌ Er π΅) |
8 | simp1 1133 | . . 3 β’ ((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β π β Rng) | |
9 | eqid 2726 | . . . 4 β’ (2Idealβπ ) = (2Idealβπ ) | |
10 | qusmulrng.p | . . . 4 β’ Β· = (.rβπ ) | |
11 | 3, 5, 9, 10 | 2idlcpblrng 21128 | . . 3 β’ ((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β ((π βΌ π β§ π βΌ π) β (π Β· π) βΌ (π Β· π))) |
12 | 8 | anim1i 614 | . . . . 5 β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ (π β π΅ β§ π β π΅)) β (π β Rng β§ (π β π΅ β§ π β π΅))) |
13 | 3anass 1092 | . . . . 5 β’ ((π β Rng β§ π β π΅ β§ π β π΅) β (π β Rng β§ (π β π΅ β§ π β π΅))) | |
14 | 12, 13 | sylibr 233 | . . . 4 β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ (π β π΅ β§ π β π΅)) β (π β Rng β§ π β π΅ β§ π β π΅)) |
15 | 3, 10 | rngcl 20069 | . . . 4 β’ ((π β Rng β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
16 | 14, 15 | syl 17 | . . 3 β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ (π β π΅ β§ π β π΅)) β (π Β· π) β π΅) |
17 | qusmulrng.a | . . 3 β’ β = (.rβπ») | |
18 | 2, 4, 7, 8, 11, 16, 10, 17 | qusmulval 17510 | . 2 β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ π β π΅ β§ π β π΅) β ([π] βΌ β [π] βΌ ) = [(π Β· π)] βΌ ) |
19 | 18 | 3expb 1117 | 1 β’ (((π β Rng β§ π β (2Idealβπ ) β§ π β (SubGrpβπ )) β§ (π β π΅ β§ π β π΅)) β ([π] βΌ β [π] βΌ ) = [(π Β· π)] βΌ ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 Er wer 8702 [cec 8703 Basecbs 17153 .rcmulr 17207 /s cqus 17460 SubGrpcsubg 19047 ~QG cqg 19049 Rngcrng 20057 2Idealc2idl 21106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-ec 8707 df-qs 8711 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-0g 17396 df-imas 17463 df-qus 17464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-eqg 19052 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-oppr 20236 df-lss 20779 df-sra 21021 df-rgmod 21022 df-lidl 21067 df-2idl 21107 |
This theorem is referenced by: quscrng 21138 rngqiprnglinlem2 21145 pzriprnglem12 21379 |
Copyright terms: Public domain | W3C validator |