Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c4 Structured version   Visualization version   GIF version

Theorem aks6d1c4 41727
Description: Claim 4 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c4.1 (𝜑𝑁 ∈ ℕ)
aks6d1c4.2 (𝜑𝑃 ∈ ℙ)
aks6d1c4.3 (𝜑𝑃𝑁)
aks6d1c4.4 (𝜑𝑅 ∈ ℕ)
aks6d1c4.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c4.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c4.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
Assertion
Ref Expression
aks6d1c4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6911 . . 3 (𝜑 → (Unit‘(ℤ/nℤ‘𝑅)) ∈ V)
2 aks6d1c4.4 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
32nnnn0d 12565 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
4 eqid 2725 . . . . . . . . . . . 12 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
54zncrng 21495 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
7 crngring 20197 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
8 aks6d1c4.7 . . . . . . . . . . 11 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
98zrhrhm 21454 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
10 zringbas 21396 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
11 eqid 2725 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
1210, 11rhmf 20436 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
136, 7, 9, 124syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
1413ffund 6727 . . . . . . . 8 (𝜑 → Fun 𝐿)
1514adantr 479 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → Fun 𝐿)
16 simpr 483 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
17 fvelima 6963 . . . . . . 7 ((Fun 𝐿𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
1815, 16, 17syl2anc 582 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
19 simpr 483 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) = 𝑎)
2019eqcomd 2731 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 = (𝐿𝑐))
21 simpll 765 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝜑)
22 simpr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
2321, 22jca 510 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))))
24 ovexd 7454 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) ∈ V)
25 aks6d1c4.6 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
26 vex 3465 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
27 vex 3465 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙 ∈ V
2826, 27op1std 8004 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (1st𝑚) = 𝑘)
2928oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑚)) = (𝑃𝑘))
3026, 27op2ndd 8005 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (2nd𝑚) = 𝑙)
3130oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑𝑙))
3229, 31oveq12d 7437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3332mpompt 7534 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3433eqcomi 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3525, 34eqtri 2753 . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3624, 35fmptd 7123 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸:(ℕ0 × ℕ0)⟶V)
3736ffund 6727 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐸)
3837adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → Fun 𝐸)
39 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
40 fvelima 6963 . . . . . . . . . . . . . . . 16 ((Fun 𝐸𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
4138, 39, 40syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
42 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) = 𝑐)
4342eqcomd 2731 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 = (𝐸𝑒))
4443oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = ((𝐸𝑒) gcd 𝑅))
45 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝜑)
46 simpr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
4745, 46jca 510 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → (𝜑𝑒 ∈ (ℕ0 × ℕ0)))
4835a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))))
49 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → 𝑚 = 𝑒)
5049fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (1st𝑚) = (1st𝑒))
5150oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (𝑃↑(1st𝑚)) = (𝑃↑(1st𝑒)))
5249fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (2nd𝑚) = (2nd𝑒))
5352oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑(2nd𝑒)))
5451, 53oveq12d 7437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
55 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
56 ovexd 7454 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ V)
5748, 54, 55, 56fvmptd 7011 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
58 aks6d1c4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ∈ ℙ)
59 prmnn 16648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℕ)
6160nnzd 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
6261adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
63 xp1st 8026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (1st𝑒) ∈ ℕ0)
6463adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (1st𝑒) ∈ ℕ0)
6562, 64zexpcld 14088 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑒)) ∈ ℤ)
66 aks6d1c4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃𝑁)
6760nnne0d 12295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ≠ 0)
68 aks6d1c4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℕ)
6968nnzd 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℤ)
70 dvdsval2 16237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7161, 67, 69, 70syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7266, 71mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
7372adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
74 xp2nd 8027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (2nd𝑒) ∈ ℕ0)
7574adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (2nd𝑒) ∈ ℕ0)
7673, 75zexpcld 14088 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ)
7765, 76zmulcld 12705 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ ℤ)
7857, 77eqeltrd 2825 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) ∈ ℤ)
7957oveq1d 7434 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅))
802nnzd 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 ∈ ℤ)
8180adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℤ)
8277, 81gcdcomd 16492 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))))
8380, 61, 693jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 aks6d1c4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 gcd 𝑅) = 1)
8569, 80jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
86 gcdcom 16491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
88 eqeq1 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
9089pm5.74i 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
9184, 90mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑅 gcd 𝑁) = 1)
9291, 66jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
93 rpdvds 16634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
9483, 92, 93syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd 𝑃) = 1)
9594adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd 𝑃) = 1)
9695adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd 𝑃) = 1)
972ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
9860ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℕ)
99 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (1st𝑒) ∈ ℕ)
100 rprpwr 16537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10197, 98, 99, 100syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10296, 101mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
10364anim1i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
104 elnnne0 12519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1st𝑒) ∈ ℕ ↔ ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
105103, 104sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → (1st𝑒) ∈ ℕ)
106105ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((1st𝑒) ≠ 0 → (1st𝑒) ∈ ℕ))
107106necon1bd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (1st𝑒) ∈ ℕ → (1st𝑒) = 0))
108107imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (1st𝑒) = 0)
109108oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑(1st𝑒)) = (𝑃↑0))
110109oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = (𝑅 gcd (𝑃↑0)))
11162zcnd 12700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℂ)
112111adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
113112exp0d 14140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑0) = 1)
114113oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = (𝑅 gcd 1))
11581adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
116 gcd1 16506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℤ → (𝑅 gcd 1) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
118114, 117eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = 1)
119110, 118eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
120102, 119pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
12180, 72, 693jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12268nnred 12260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑁 ∈ ℝ)
123122recnd 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ∈ ℂ)
12460nnred 12260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑃 ∈ ℝ)
125124recnd 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑃 ∈ ℂ)
12668nngt0d 12294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑁)
127126gt0ne0d 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ≠ 0)
128123, 125, 127, 67ddcand 12043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = 𝑃)
129128, 61eqeltrd 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
13060nngt0d 12294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑃)
131122, 124, 126, 130divgt0d 12182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝑁 / 𝑃))
132131gt0ne0d 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / 𝑃) ≠ 0)
133 dvdsval2 16237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
13472, 132, 69, 133syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
135129, 134mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
13691, 135jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
137 rpdvds 16634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
138121, 136, 137syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
139138adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
140139adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
1412ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
14272, 131jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
143 elnnz 12601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
144142, 143sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
145144adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ)
146145adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℕ)
147 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (2nd𝑒) ∈ ℕ)
148 rprpwr 16537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ (𝑁 / 𝑃) ∈ ℕ ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
149141, 146, 147, 148syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
150140, 149mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
15175anim1i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
152 elnnne0 12519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2nd𝑒) ∈ ℕ ↔ ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
153151, 152sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → (2nd𝑒) ∈ ℕ)
154153ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((2nd𝑒) ≠ 0 → (2nd𝑒) ∈ ℕ))
155154necon1bd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (2nd𝑒) ∈ ℕ → (2nd𝑒) = 0))
156155imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (2nd𝑒) = 0)
157156oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑(2nd𝑒)) = ((𝑁 / 𝑃)↑0))
158157oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd ((𝑁 / 𝑃)↑0)))
159123adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℂ)
160159adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑁 ∈ ℂ)
161111adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
16267ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ≠ 0)
163160, 161, 162divcld 12023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℂ)
164163exp0d 14140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑0) = 1)
165164oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑0)) = (𝑅 gcd 1))
166158, 165eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd 1))
16781adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
168167, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
169166, 168eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
170150, 169pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
171120, 170jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
172 rpmul 16633 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℤ ∧ (𝑃↑(1st𝑒)) ∈ ℤ ∧ ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
17381, 65, 76, 172syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
174171, 173mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1)
17582, 174eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = 1)
17679, 175eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = 1)
17778, 176jca 510 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
17847, 177syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
179178adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
180179simprd 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) gcd 𝑅) = 1)
18144, 180eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = 1)
182179simpld 493 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) ∈ ℤ)
18343, 182eqeltrd 2825 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 ∈ ℤ)
184181, 183jca 510 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
185 nfv 1909 . . . . . . . . . . . . . . . . . . . 20 𝑒(𝐸𝑑) = 𝑐
186 nfv 1909 . . . . . . . . . . . . . . . . . . . 20 𝑑(𝐸𝑒) = 𝑐
187 fveqeq2 6905 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑒 → ((𝐸𝑑) = 𝑐 ↔ (𝐸𝑒) = 𝑐))
188185, 186, 187cbvrexw 3294 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 ↔ ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
189188biimpi 215 . . . . . . . . . . . . . . . . . 18 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
190189adantl 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
191184, 190r19.29a 3151 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
192191ex 411 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)))
19341, 192mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
194193simpld 493 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝑐 gcd 𝑅) = 1)
1953adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑅 ∈ ℕ0)
196193simprd 494 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ ℤ)
197 eqid 2725 . . . . . . . . . . . . . . 15 (Unit‘(ℤ/nℤ‘𝑅)) = (Unit‘(ℤ/nℤ‘𝑅))
1984, 197, 8znunit 21514 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ0𝑐 ∈ ℤ) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
199195, 196, 198syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
200194, 199mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20123, 200syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
202201adantr 479 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20320, 202eqeltrd 2825 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
204 nfv 1909 . . . . . . . . . . . 12 𝑐(𝐿𝑏) = 𝑎
205 nfv 1909 . . . . . . . . . . . 12 𝑏(𝐿𝑐) = 𝑎
206 fveqeq2 6905 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝐿𝑏) = 𝑎 ↔ (𝐿𝑐) = 𝑎))
207204, 205, 206cbvrexw 3294 . . . . . . . . . . 11 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 ↔ ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
208207biimpi 215 . . . . . . . . . 10 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
209208adantl 480 . . . . . . . . 9 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
210203, 209r19.29a 3151 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
211210ex 411 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
212211adantr 479 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
21318, 212mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
214213ex 411 . . . 4 (𝜑 → (𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
215214ssrdv 3982 . . 3 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅)))
216 hashss 14404 . . 3 (((Unit‘(ℤ/nℤ‘𝑅)) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2171, 215, 216syl2anc 582 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2184, 197znunithash 21515 . . 3 (𝑅 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
2192, 218syl 17 . 2 (𝜑 → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
220217, 219breqtrd 5175 1 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059  Vcvv 3461  wss 3944  cop 4636   class class class wbr 5149  cmpt 5232   × cxp 5676  cima 5681  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421  1st c1st 7992  2nd c2nd 7993  cc 11138  0cc0 11140  1c1 11141   · cmul 11145   < clt 11280  cle 11281   / cdiv 11903  cn 12245  0cn0 12505  cz 12591  cexp 14062  chash 14325  cdvds 16234   gcd cgcd 16472  cprime 16645  ϕcphi 16736  Basecbs 17183  Ringcrg 20185  CRingccrg 20186  Unitcui 20306   RingHom crh 20420  ringczring 21389  ℤRHomczrh 21442  ℤ/nczn 21445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-gcd 16473  df-prm 16646  df-phi 16738  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-zn 21449
This theorem is referenced by:  aks6d1c7lem1  41783
  Copyright terms: Public domain W3C validator