Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c4 Structured version   Visualization version   GIF version

Theorem aks6d1c4 42085
Description: Claim 4 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c4.1 (𝜑𝑁 ∈ ℕ)
aks6d1c4.2 (𝜑𝑃 ∈ ℙ)
aks6d1c4.3 (𝜑𝑃𝑁)
aks6d1c4.4 (𝜑𝑅 ∈ ℕ)
aks6d1c4.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c4.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c4.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
Assertion
Ref Expression
aks6d1c4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6855 . . 3 (𝜑 → (Unit‘(ℤ/nℤ‘𝑅)) ∈ V)
2 aks6d1c4.4 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
32nnnn0d 12479 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
4 eqid 2729 . . . . . . . . . . . 12 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
54zncrng 21430 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
7 crngring 20130 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
8 aks6d1c4.7 . . . . . . . . . . 11 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
98zrhrhm 21397 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
10 zringbas 21339 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
11 eqid 2729 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
1210, 11rhmf 20370 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
136, 7, 9, 124syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
1413ffund 6674 . . . . . . . 8 (𝜑 → Fun 𝐿)
1514adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → Fun 𝐿)
16 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
17 fvelima 6908 . . . . . . 7 ((Fun 𝐿𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
1815, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
19 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) = 𝑎)
2019eqcomd 2735 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 = (𝐿𝑐))
21 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝜑)
22 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
2321, 22jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))))
24 ovexd 7404 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) ∈ V)
25 aks6d1c4.6 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
26 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
27 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙 ∈ V
2826, 27op1std 7957 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (1st𝑚) = 𝑘)
2928oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑚)) = (𝑃𝑘))
3026, 27op2ndd 7958 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (2nd𝑚) = 𝑙)
3130oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑𝑙))
3229, 31oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3332mpompt 7483 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3433eqcomi 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3525, 34eqtri 2752 . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3624, 35fmptd 7068 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸:(ℕ0 × ℕ0)⟶V)
3736ffund 6674 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐸)
3837adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → Fun 𝐸)
39 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
40 fvelima 6908 . . . . . . . . . . . . . . . 16 ((Fun 𝐸𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
42 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) = 𝑐)
4342eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 = (𝐸𝑒))
4443oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = ((𝐸𝑒) gcd 𝑅))
45 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝜑)
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
4745, 46jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → (𝜑𝑒 ∈ (ℕ0 × ℕ0)))
4835a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))))
49 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → 𝑚 = 𝑒)
5049fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (1st𝑚) = (1st𝑒))
5150oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (𝑃↑(1st𝑚)) = (𝑃↑(1st𝑒)))
5249fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (2nd𝑚) = (2nd𝑒))
5352oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑(2nd𝑒)))
5451, 53oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
55 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
56 ovexd 7404 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ V)
5748, 54, 55, 56fvmptd 6957 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
58 aks6d1c4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ∈ ℙ)
59 prmnn 16620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℕ)
6160nnzd 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
63 xp1st 7979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (1st𝑒) ∈ ℕ0)
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (1st𝑒) ∈ ℕ0)
6562, 64zexpcld 14028 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑒)) ∈ ℤ)
66 aks6d1c4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃𝑁)
6760nnne0d 12212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ≠ 0)
68 aks6d1c4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℕ)
6968nnzd 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℤ)
70 dvdsval2 16201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7161, 67, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7266, 71mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
74 xp2nd 7980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (2nd𝑒) ∈ ℕ0)
7574adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (2nd𝑒) ∈ ℕ0)
7673, 75zexpcld 14028 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ)
7765, 76zmulcld 12620 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ ℤ)
7857, 77eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) ∈ ℤ)
7957oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅))
802nnzd 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 ∈ ℤ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℤ)
8277, 81gcdcomd 16460 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))))
8380, 61, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 aks6d1c4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 gcd 𝑅) = 1)
8569, 80jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
86 gcdcom 16459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
88 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
9089pm5.74i 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
9184, 90mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑅 gcd 𝑁) = 1)
9291, 66jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
93 rpdvds 16606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
9483, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd 𝑃) = 1)
9594adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd 𝑃) = 1)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd 𝑃) = 1)
972ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
9860ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℕ)
99 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (1st𝑒) ∈ ℕ)
100 rprpwr 16505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10296, 101mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
10364anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
104 elnnne0 12432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1st𝑒) ∈ ℕ ↔ ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
105103, 104sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → (1st𝑒) ∈ ℕ)
106105ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((1st𝑒) ≠ 0 → (1st𝑒) ∈ ℕ))
107106necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (1st𝑒) ∈ ℕ → (1st𝑒) = 0))
108107imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (1st𝑒) = 0)
109108oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑(1st𝑒)) = (𝑃↑0))
110109oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = (𝑅 gcd (𝑃↑0)))
11162zcnd 12615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℂ)
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
113112exp0d 14081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑0) = 1)
114113oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = (𝑅 gcd 1))
11581adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
116 gcd1 16474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℤ → (𝑅 gcd 1) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
118114, 117eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = 1)
119110, 118eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
120102, 119pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
12180, 72, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12268nnred 12177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑁 ∈ ℝ)
123122recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ∈ ℂ)
12460nnred 12177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑃 ∈ ℝ)
125124recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑃 ∈ ℂ)
12668nngt0d 12211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑁)
127126gt0ne0d 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ≠ 0)
128123, 125, 127, 67ddcand 11954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = 𝑃)
129128, 61eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
13060nngt0d 12211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑃)
131122, 124, 126, 130divgt0d 12094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝑁 / 𝑃))
132131gt0ne0d 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / 𝑃) ≠ 0)
133 dvdsval2 16201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
13472, 132, 69, 133syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
135129, 134mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
13691, 135jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
137 rpdvds 16606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
138121, 136, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
140139adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
1412ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
14272, 131jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
143 elnnz 12515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
144142, 143sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ)
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℕ)
147 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (2nd𝑒) ∈ ℕ)
148 rprpwr 16505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ (𝑁 / 𝑃) ∈ ℕ ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
149141, 146, 147, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
150140, 149mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
15175anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
152 elnnne0 12432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2nd𝑒) ∈ ℕ ↔ ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
153151, 152sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → (2nd𝑒) ∈ ℕ)
154153ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((2nd𝑒) ≠ 0 → (2nd𝑒) ∈ ℕ))
155154necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (2nd𝑒) ∈ ℕ → (2nd𝑒) = 0))
156155imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (2nd𝑒) = 0)
157156oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑(2nd𝑒)) = ((𝑁 / 𝑃)↑0))
158157oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd ((𝑁 / 𝑃)↑0)))
159123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℂ)
160159adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑁 ∈ ℂ)
161111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
16267ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ≠ 0)
163160, 161, 162divcld 11934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℂ)
164163exp0d 14081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑0) = 1)
165164oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑0)) = (𝑅 gcd 1))
166158, 165eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd 1))
16781adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
168167, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
169166, 168eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
170150, 169pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
171120, 170jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
172 rpmul 16605 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℤ ∧ (𝑃↑(1st𝑒)) ∈ ℤ ∧ ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
17381, 65, 76, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
174171, 173mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1)
17582, 174eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = 1)
17679, 175eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = 1)
17778, 176jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
17847, 177syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
179178adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
180179simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) gcd 𝑅) = 1)
18144, 180eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = 1)
182179simpld 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) ∈ ℤ)
18343, 182eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 ∈ ℤ)
184181, 183jca 511 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
185 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑒(𝐸𝑑) = 𝑐
186 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑑(𝐸𝑒) = 𝑐
187 fveqeq2 6849 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑒 → ((𝐸𝑑) = 𝑐 ↔ (𝐸𝑒) = 𝑐))
188185, 186, 187cbvrexw 3279 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 ↔ ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
189188biimpi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
190189adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
191184, 190r19.29a 3141 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
192191ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)))
19341, 192mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
194193simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝑐 gcd 𝑅) = 1)
1953adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑅 ∈ ℕ0)
196193simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ ℤ)
197 eqid 2729 . . . . . . . . . . . . . . 15 (Unit‘(ℤ/nℤ‘𝑅)) = (Unit‘(ℤ/nℤ‘𝑅))
1984, 197, 8znunit 21449 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ0𝑐 ∈ ℤ) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
199195, 196, 198syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
200194, 199mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20123, 200syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
202201adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20320, 202eqeltrd 2828 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
204 nfv 1914 . . . . . . . . . . . 12 𝑐(𝐿𝑏) = 𝑎
205 nfv 1914 . . . . . . . . . . . 12 𝑏(𝐿𝑐) = 𝑎
206 fveqeq2 6849 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝐿𝑏) = 𝑎 ↔ (𝐿𝑐) = 𝑎))
207204, 205, 206cbvrexw 3279 . . . . . . . . . . 11 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 ↔ ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
208207biimpi 216 . . . . . . . . . 10 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
209208adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
210203, 209r19.29a 3141 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
211210ex 412 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
212211adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
21318, 212mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
214213ex 412 . . . 4 (𝜑 → (𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
215214ssrdv 3949 . . 3 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅)))
216 hashss 14350 . . 3 (((Unit‘(ℤ/nℤ‘𝑅)) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2171, 215, 216syl2anc 584 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2184, 197znunithash 21450 . . 3 (𝑅 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
2192, 218syl 17 . 2 (𝜑 → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
220217, 219breqtrd 5128 1 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  wss 3911  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  cima 5634  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cexp 14002  chash 14271  cdvds 16198   gcd cgcd 16440  cprime 16617  ϕcphi 16710  Basecbs 17155  Ringcrg 20118  CRingccrg 20119  Unitcui 20240   RingHom crh 20354  ringczring 21332  ℤRHomczrh 21385  ℤ/nczn 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19121  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-rsp 21095  df-2idl 21136  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-zn 21392
This theorem is referenced by:  aks6d1c7lem1  42141
  Copyright terms: Public domain W3C validator