Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c4 Structured version   Visualization version   GIF version

Theorem aks6d1c4 42119
Description: Claim 4 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c4.1 (𝜑𝑁 ∈ ℕ)
aks6d1c4.2 (𝜑𝑃 ∈ ℙ)
aks6d1c4.3 (𝜑𝑃𝑁)
aks6d1c4.4 (𝜑𝑅 ∈ ℕ)
aks6d1c4.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c4.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c4.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
Assertion
Ref Expression
aks6d1c4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . 3 (𝜑 → (Unit‘(ℤ/nℤ‘𝑅)) ∈ V)
2 aks6d1c4.4 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
32nnnn0d 12510 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
4 eqid 2730 . . . . . . . . . . . 12 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
54zncrng 21461 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
7 crngring 20161 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
8 aks6d1c4.7 . . . . . . . . . . 11 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
98zrhrhm 21428 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
10 zringbas 21370 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
11 eqid 2730 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
1210, 11rhmf 20401 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
136, 7, 9, 124syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
1413ffund 6695 . . . . . . . 8 (𝜑 → Fun 𝐿)
1514adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → Fun 𝐿)
16 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
17 fvelima 6929 . . . . . . 7 ((Fun 𝐿𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
1815, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
19 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) = 𝑎)
2019eqcomd 2736 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 = (𝐿𝑐))
21 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝜑)
22 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
2321, 22jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))))
24 ovexd 7425 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) ∈ V)
25 aks6d1c4.6 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
26 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
27 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙 ∈ V
2826, 27op1std 7981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (1st𝑚) = 𝑘)
2928oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑚)) = (𝑃𝑘))
3026, 27op2ndd 7982 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (2nd𝑚) = 𝑙)
3130oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑𝑙))
3229, 31oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3332mpompt 7506 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3433eqcomi 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3525, 34eqtri 2753 . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3624, 35fmptd 7089 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸:(ℕ0 × ℕ0)⟶V)
3736ffund 6695 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐸)
3837adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → Fun 𝐸)
39 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
40 fvelima 6929 . . . . . . . . . . . . . . . 16 ((Fun 𝐸𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
42 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) = 𝑐)
4342eqcomd 2736 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 = (𝐸𝑒))
4443oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = ((𝐸𝑒) gcd 𝑅))
45 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝜑)
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
4745, 46jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → (𝜑𝑒 ∈ (ℕ0 × ℕ0)))
4835a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))))
49 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → 𝑚 = 𝑒)
5049fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (1st𝑚) = (1st𝑒))
5150oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (𝑃↑(1st𝑚)) = (𝑃↑(1st𝑒)))
5249fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (2nd𝑚) = (2nd𝑒))
5352oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑(2nd𝑒)))
5451, 53oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
55 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
56 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ V)
5748, 54, 55, 56fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
58 aks6d1c4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ∈ ℙ)
59 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℕ)
6160nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
63 xp1st 8003 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (1st𝑒) ∈ ℕ0)
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (1st𝑒) ∈ ℕ0)
6562, 64zexpcld 14059 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑒)) ∈ ℤ)
66 aks6d1c4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃𝑁)
6760nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ≠ 0)
68 aks6d1c4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℕ)
6968nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℤ)
70 dvdsval2 16232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7161, 67, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7266, 71mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
74 xp2nd 8004 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (2nd𝑒) ∈ ℕ0)
7574adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (2nd𝑒) ∈ ℕ0)
7673, 75zexpcld 14059 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ)
7765, 76zmulcld 12651 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ ℤ)
7857, 77eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) ∈ ℤ)
7957oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅))
802nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 ∈ ℤ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℤ)
8277, 81gcdcomd 16491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))))
8380, 61, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 aks6d1c4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 gcd 𝑅) = 1)
8569, 80jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
86 gcdcom 16490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
88 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
9089pm5.74i 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
9184, 90mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑅 gcd 𝑁) = 1)
9291, 66jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
93 rpdvds 16637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
9483, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd 𝑃) = 1)
9594adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd 𝑃) = 1)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd 𝑃) = 1)
972ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
9860ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℕ)
99 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (1st𝑒) ∈ ℕ)
100 rprpwr 16536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10296, 101mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
10364anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
104 elnnne0 12463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1st𝑒) ∈ ℕ ↔ ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
105103, 104sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → (1st𝑒) ∈ ℕ)
106105ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((1st𝑒) ≠ 0 → (1st𝑒) ∈ ℕ))
107106necon1bd 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (1st𝑒) ∈ ℕ → (1st𝑒) = 0))
108107imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (1st𝑒) = 0)
109108oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑(1st𝑒)) = (𝑃↑0))
110109oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = (𝑅 gcd (𝑃↑0)))
11162zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℂ)
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
113112exp0d 14112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑0) = 1)
114113oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = (𝑅 gcd 1))
11581adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
116 gcd1 16505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℤ → (𝑅 gcd 1) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
118114, 117eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = 1)
119110, 118eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
120102, 119pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
12180, 72, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12268nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑁 ∈ ℝ)
123122recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ∈ ℂ)
12460nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑃 ∈ ℝ)
125124recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑃 ∈ ℂ)
12668nngt0d 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑁)
127126gt0ne0d 11749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ≠ 0)
128123, 125, 127, 67ddcand 11985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = 𝑃)
129128, 61eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
13060nngt0d 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑃)
131122, 124, 126, 130divgt0d 12125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝑁 / 𝑃))
132131gt0ne0d 11749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / 𝑃) ≠ 0)
133 dvdsval2 16232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
13472, 132, 69, 133syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
135129, 134mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
13691, 135jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
137 rpdvds 16637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
138121, 136, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
140139adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
1412ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
14272, 131jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
143 elnnz 12546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
144142, 143sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ)
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℕ)
147 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (2nd𝑒) ∈ ℕ)
148 rprpwr 16536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ (𝑁 / 𝑃) ∈ ℕ ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
149141, 146, 147, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
150140, 149mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
15175anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
152 elnnne0 12463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2nd𝑒) ∈ ℕ ↔ ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
153151, 152sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → (2nd𝑒) ∈ ℕ)
154153ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((2nd𝑒) ≠ 0 → (2nd𝑒) ∈ ℕ))
155154necon1bd 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (2nd𝑒) ∈ ℕ → (2nd𝑒) = 0))
156155imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (2nd𝑒) = 0)
157156oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑(2nd𝑒)) = ((𝑁 / 𝑃)↑0))
158157oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd ((𝑁 / 𝑃)↑0)))
159123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℂ)
160159adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑁 ∈ ℂ)
161111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
16267ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ≠ 0)
163160, 161, 162divcld 11965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℂ)
164163exp0d 14112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑0) = 1)
165164oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑0)) = (𝑅 gcd 1))
166158, 165eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd 1))
16781adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
168167, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
169166, 168eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
170150, 169pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
171120, 170jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
172 rpmul 16636 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℤ ∧ (𝑃↑(1st𝑒)) ∈ ℤ ∧ ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
17381, 65, 76, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
174171, 173mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1)
17582, 174eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = 1)
17679, 175eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = 1)
17778, 176jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
17847, 177syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
179178adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
180179simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) gcd 𝑅) = 1)
18144, 180eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = 1)
182179simpld 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) ∈ ℤ)
18343, 182eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 ∈ ℤ)
184181, 183jca 511 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
185 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑒(𝐸𝑑) = 𝑐
186 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑑(𝐸𝑒) = 𝑐
187 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑒 → ((𝐸𝑑) = 𝑐 ↔ (𝐸𝑒) = 𝑐))
188185, 186, 187cbvrexw 3283 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 ↔ ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
189188biimpi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
190189adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
191184, 190r19.29a 3142 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
192191ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)))
19341, 192mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
194193simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝑐 gcd 𝑅) = 1)
1953adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑅 ∈ ℕ0)
196193simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ ℤ)
197 eqid 2730 . . . . . . . . . . . . . . 15 (Unit‘(ℤ/nℤ‘𝑅)) = (Unit‘(ℤ/nℤ‘𝑅))
1984, 197, 8znunit 21480 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ0𝑐 ∈ ℤ) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
199195, 196, 198syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
200194, 199mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20123, 200syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
202201adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20320, 202eqeltrd 2829 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
204 nfv 1914 . . . . . . . . . . . 12 𝑐(𝐿𝑏) = 𝑎
205 nfv 1914 . . . . . . . . . . . 12 𝑏(𝐿𝑐) = 𝑎
206 fveqeq2 6870 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝐿𝑏) = 𝑎 ↔ (𝐿𝑐) = 𝑎))
207204, 205, 206cbvrexw 3283 . . . . . . . . . . 11 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 ↔ ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
208207biimpi 216 . . . . . . . . . 10 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
209208adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
210203, 209r19.29a 3142 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
211210ex 412 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
212211adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
21318, 212mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
214213ex 412 . . . 4 (𝜑 → (𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
215214ssrdv 3955 . . 3 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅)))
216 hashss 14381 . . 3 (((Unit‘(ℤ/nℤ‘𝑅)) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2171, 215, 216syl2anc 584 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2184, 197znunithash 21481 . . 3 (𝑅 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
2192, 218syl 17 . 2 (𝜑 → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
220217, 219breqtrd 5136 1 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  wss 3917  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229   gcd cgcd 16471  cprime 16648  ϕcphi 16741  Basecbs 17186  Ringcrg 20149  CRingccrg 20150  Unitcui 20271   RingHom crh 20385  ringczring 21363  ℤRHomczrh 21416  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423
This theorem is referenced by:  aks6d1c7lem1  42175
  Copyright terms: Public domain W3C validator