Step | Hyp | Ref
| Expression |
1 | | fvexd 6911 |
. . 3
⊢ (𝜑 →
(Unit‘(ℤ/nℤ‘𝑅)) ∈ V) |
2 | | aks6d1c4.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ ℕ) |
3 | 2 | nnnn0d 12565 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
4 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
5 | 4 | zncrng 21495 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℕ0
→ (ℤ/nℤ‘𝑅) ∈ CRing) |
6 | 3, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ/nℤ‘𝑅) ∈ CRing) |
7 | | crngring 20197 |
. . . . . . . . . 10
⊢
((ℤ/nℤ‘𝑅) ∈ CRing →
(ℤ/nℤ‘𝑅) ∈ Ring) |
8 | | aks6d1c4.7 |
. . . . . . . . . . 11
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
9 | 8 | zrhrhm 21454 |
. . . . . . . . . 10
⊢
((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom
(ℤ/nℤ‘𝑅))) |
10 | | zringbas 21396 |
. . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) |
11 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(Base‘(ℤ/nℤ‘𝑅)) =
(Base‘(ℤ/nℤ‘𝑅)) |
12 | 10, 11 | rhmf 20436 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (ℤring
RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
13 | 6, 7, 9, 12 | 4syl 19 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
14 | 13 | ffund 6727 |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐿) |
15 | 14 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → Fun 𝐿) |
16 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
17 | | fvelima 6963 |
. . . . . . 7
⊢ ((Fun
𝐿 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) |
18 | 15, 16, 17 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) |
19 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ (𝐿‘𝑐) = 𝑎) → (𝐿‘𝑐) = 𝑎) |
20 | 19 | eqcomd 2731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ (𝐿‘𝑐) = 𝑎) → 𝑎 = (𝐿‘𝑐)) |
21 | | simpll 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝜑) |
22 | | simpr 483 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) |
23 | 21, 22 | jca 510 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0)))) |
24 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ×
ℕ0)) → ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚))) ∈ V) |
25 | | aks6d1c4.6 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
26 | | vex 3465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑘 ∈ V |
27 | | vex 3465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑙 ∈ V |
28 | 26, 27 | op1std 8004 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 〈𝑘, 𝑙〉 → (1st ‘𝑚) = 𝑘) |
29 | 28 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑚)) = (𝑃↑𝑘)) |
30 | 26, 27 | op2ndd 8005 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 〈𝑘, 𝑙〉 → (2nd ‘𝑚) = 𝑙) |
31 | 30 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑚)) = ((𝑁 / 𝑃)↑𝑙)) |
32 | 29, 31 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
33 | 32 | mpompt 7534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ (ℕ0
× ℕ0) ↦ ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
34 | 33 | eqcomi 2734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ0,
𝑙 ∈
ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑚 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚)))) |
35 | 25, 34 | eqtri 2753 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐸 = (𝑚 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚)))) |
36 | 24, 35 | fmptd 7123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶V) |
37 | 36 | ffund 6727 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Fun 𝐸) |
38 | 37 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → Fun 𝐸) |
39 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) |
40 | | fvelima 6963 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐸 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) |
41 | 38, 39, 40 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) |
42 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → (𝐸‘𝑒) = 𝑐) |
43 | 42 | eqcomd 2731 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → 𝑐 = (𝐸‘𝑒)) |
44 | 43 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → (𝑐 gcd 𝑅) = ((𝐸‘𝑒) gcd 𝑅)) |
45 | | simplll 773 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝜑) |
46 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑒 ∈ (ℕ0 ×
ℕ0)) |
47 | 45, 46 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0))) |
48 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝐸 = (𝑚 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚))))) |
49 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → 𝑚 = 𝑒) |
50 | 49 | fveq2d 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → (1st ‘𝑚) = (1st ‘𝑒)) |
51 | 50 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → (𝑃↑(1st ‘𝑚)) = (𝑃↑(1st ‘𝑒))) |
52 | 49 | fveq2d 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → (2nd ‘𝑚) = (2nd ‘𝑒)) |
53 | 52 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑁 / 𝑃)↑(2nd ‘𝑚)) = ((𝑁 / 𝑃)↑(2nd ‘𝑒))) |
54 | 51, 53 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑃↑(1st ‘𝑚)) · ((𝑁 / 𝑃)↑(2nd ‘𝑚))) = ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒)))) |
55 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑒 ∈ (ℕ0 ×
ℕ0)) |
56 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))) ∈ V) |
57 | 48, 54, 55, 56 | fvmptd 7011 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝐸‘𝑒) = ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒)))) |
58 | | aks6d1c4.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ∈ ℙ) |
59 | | prmnn 16648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑃 ∈ ℕ) |
61 | 60 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑃 ∈ ℤ) |
62 | 61 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑃 ∈ ℤ) |
63 | | xp1st 8026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑒 ∈ (ℕ0
× ℕ0) → (1st ‘𝑒) ∈
ℕ0) |
64 | 63 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (1st ‘𝑒) ∈
ℕ0) |
65 | 62, 64 | zexpcld 14088 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑃↑(1st ‘𝑒)) ∈
ℤ) |
66 | | aks6d1c4.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
67 | 60 | nnne0d 12295 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ≠ 0) |
68 | | aks6d1c4.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑁 ∈ ℕ) |
69 | 68 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
70 | | dvdsval2 16237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
71 | 61, 67, 69, 70 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
72 | 66, 71 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℤ) |
73 | 72 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑁 / 𝑃) ∈ ℤ) |
74 | | xp2nd 8027 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑒 ∈ (ℕ0
× ℕ0) → (2nd ‘𝑒) ∈
ℕ0) |
75 | 74 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (2nd ‘𝑒) ∈
ℕ0) |
76 | 73, 75 | zexpcld 14088 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑒)) ∈
ℤ) |
77 | 65, 76 | zmulcld 12705 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))) ∈
ℤ) |
78 | 57, 77 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝐸‘𝑒) ∈ ℤ) |
79 | 57 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝐸‘𝑒) gcd 𝑅) = (((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))) gcd 𝑅)) |
80 | 2 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑅 ∈ ℤ) |
81 | 80 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑅 ∈ ℤ) |
82 | 77, 81 | gcdcomd 16492 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))) gcd 𝑅) = (𝑅 gcd ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))))) |
83 | 80, 61, 69 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
84 | | aks6d1c4.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
85 | 69, 80 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ)) |
86 | | gcdcom 16491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁)) |
88 | | eqeq1 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1)) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1)) |
90 | 89 | pm5.74i 270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1)) |
91 | 84, 90 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑅 gcd 𝑁) = 1) |
92 | 91, 66 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃 ∥ 𝑁)) |
93 | | rpdvds 16634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃 ∥ 𝑁)) → (𝑅 gcd 𝑃) = 1) |
94 | 83, 92, 93 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑅 gcd 𝑃) = 1) |
95 | 94 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑅 gcd 𝑃) = 1) |
96 | 95 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd 𝑃) = 1) |
97 | 2 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → 𝑅 ∈ ℕ) |
98 | 60 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → 𝑃 ∈ ℕ) |
99 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → (1st
‘𝑒) ∈
ℕ) |
100 | | rprpwr 16537 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑅 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧
(1st ‘𝑒)
∈ ℕ) → ((𝑅
gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1)) |
101 | 97, 98, 99, 100 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1)) |
102 | 96, 101 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1) |
103 | 64 | anim1i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ≠ 0) → ((1st
‘𝑒) ∈
ℕ0 ∧ (1st ‘𝑒) ≠ 0)) |
104 | | elnnne0 12519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((1st ‘𝑒) ∈ ℕ ↔ ((1st
‘𝑒) ∈
ℕ0 ∧ (1st ‘𝑒) ≠ 0)) |
105 | 103, 104 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (1st ‘𝑒) ≠ 0) → (1st ‘𝑒) ∈
ℕ) |
106 | 105 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((1st ‘𝑒) ≠ 0 → (1st ‘𝑒) ∈
ℕ)) |
107 | 106 | necon1bd 2947 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (¬ (1st ‘𝑒) ∈ ℕ → (1st
‘𝑒) =
0)) |
108 | 107 | imp 405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (1st
‘𝑒) =
0) |
109 | 108 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑃↑(1st ‘𝑒)) = (𝑃↑0)) |
110 | 109 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = (𝑅 gcd (𝑃↑0))) |
111 | 62 | zcnd 12700 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑃 ∈ ℂ) |
112 | 111 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → 𝑃 ∈ ℂ) |
113 | 112 | exp0d 14140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑃↑0) = 1) |
114 | 113 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = (𝑅 gcd 1)) |
115 | 81 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → 𝑅 ∈ ℤ) |
116 | | gcd1 16506 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ ℤ → (𝑅 gcd 1) = 1) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1) |
118 | 114, 117 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = 1) |
119 | 110, 118 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (1st ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1) |
120 | 102, 119 | pm2.61dan 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1) |
121 | 80, 72, 69 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
122 | 68 | nnred 12260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → 𝑁 ∈ ℝ) |
123 | 122 | recnd 11274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → 𝑁 ∈ ℂ) |
124 | 60 | nnred 12260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → 𝑃 ∈ ℝ) |
125 | 124 | recnd 11274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → 𝑃 ∈ ℂ) |
126 | 68 | nngt0d 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → 0 < 𝑁) |
127 | 126 | gt0ne0d 11810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → 𝑁 ≠ 0) |
128 | 123, 125,
127, 67 | ddcand 12043 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑁 / (𝑁 / 𝑃)) = 𝑃) |
129 | 128, 61 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ) |
130 | 60 | nngt0d 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → 0 < 𝑃) |
131 | 122, 124,
126, 130 | divgt0d 12182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → 0 < (𝑁 / 𝑃)) |
132 | 131 | gt0ne0d 11810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑁 / 𝑃) ≠ 0) |
133 | | dvdsval2 16237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)) |
134 | 72, 132, 69, 133 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)) |
135 | 129, 134 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑁 / 𝑃) ∥ 𝑁) |
136 | 91, 135 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) |
137 | | rpdvds 16634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
138 | 121, 136,
137 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
139 | 138 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
140 | 139 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
141 | 2 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → 𝑅 ∈ ℕ) |
142 | 72, 131 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃))) |
143 | | elnnz 12601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃))) |
144 | 142, 143 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
145 | 144 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
146 | 145 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℕ) |
147 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → (2nd
‘𝑒) ∈
ℕ) |
148 | | rprpwr 16537 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑅 ∈ ℕ ∧ (𝑁 / 𝑃) ∈ ℕ ∧ (2nd
‘𝑒) ∈ ℕ)
→ ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1)) |
149 | 141, 146,
147, 148 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1)) |
150 | 140, 149 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1) |
151 | 75 | anim1i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ≠ 0) → ((2nd
‘𝑒) ∈
ℕ0 ∧ (2nd ‘𝑒) ≠ 0)) |
152 | | elnnne0 12519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((2nd ‘𝑒) ∈ ℕ ↔ ((2nd
‘𝑒) ∈
ℕ0 ∧ (2nd ‘𝑒) ≠ 0)) |
153 | 151, 152 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (2nd ‘𝑒) ≠ 0) → (2nd ‘𝑒) ∈
ℕ) |
154 | 153 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((2nd ‘𝑒) ≠ 0 → (2nd ‘𝑒) ∈
ℕ)) |
155 | 154 | necon1bd 2947 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (¬ (2nd ‘𝑒) ∈ ℕ → (2nd
‘𝑒) =
0)) |
156 | 155 | imp 405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (2nd
‘𝑒) =
0) |
157 | 156 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑(2nd ‘𝑒)) = ((𝑁 / 𝑃)↑0)) |
158 | 157 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = (𝑅 gcd ((𝑁 / 𝑃)↑0))) |
159 | 123 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → 𝑁 ∈ ℂ) |
160 | 159 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → 𝑁 ∈ ℂ) |
161 | 111 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → 𝑃 ∈ ℂ) |
162 | 67 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → 𝑃 ≠ 0) |
163 | 160, 161,
162 | divcld 12023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℂ) |
164 | 163 | exp0d 14140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑0) = 1) |
165 | 164 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑0)) = (𝑅 gcd 1)) |
166 | 158, 165 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = (𝑅 gcd 1)) |
167 | 81 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → 𝑅 ∈ ℤ) |
168 | 167, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1) |
169 | 166, 168 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ ¬ (2nd ‘𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1) |
170 | 150, 169 | pm2.61dan 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1) |
171 | 120, 170 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1)) |
172 | | rpmul 16633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ ℤ ∧ (𝑃↑(1st
‘𝑒)) ∈ ℤ
∧ ((𝑁 / 𝑃)↑(2nd
‘𝑒)) ∈ ℤ)
→ (((𝑅 gcd (𝑃↑(1st
‘𝑒))) = 1 ∧
(𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒)))) = 1)) |
173 | 81, 65, 76, 172 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (((𝑅 gcd (𝑃↑(1st ‘𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd ‘𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒)))) = 1)) |
174 | 171, 173 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (𝑅 gcd ((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒)))) = 1) |
175 | 82, 174 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → (((𝑃↑(1st ‘𝑒)) · ((𝑁 / 𝑃)↑(2nd ‘𝑒))) gcd 𝑅) = 1) |
176 | 79, 175 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝐸‘𝑒) gcd 𝑅) = 1) |
177 | 78, 176 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝐸‘𝑒) ∈ ℤ ∧ ((𝐸‘𝑒) gcd 𝑅) = 1)) |
178 | 47, 177 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) → ((𝐸‘𝑒) ∈ ℤ ∧ ((𝐸‘𝑒) gcd 𝑅) = 1)) |
179 | 178 | adantr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → ((𝐸‘𝑒) ∈ ℤ ∧ ((𝐸‘𝑒) gcd 𝑅) = 1)) |
180 | 179 | simprd 494 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → ((𝐸‘𝑒) gcd 𝑅) = 1) |
181 | 44, 180 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → (𝑐 gcd 𝑅) = 1) |
182 | 179 | simpld 493 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → (𝐸‘𝑒) ∈ ℤ) |
183 | 43, 182 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → 𝑐 ∈ ℤ) |
184 | 181, 183 | jca 510 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 ×
ℕ0)) ∧ (𝐸‘𝑒) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)) |
185 | | nfv 1909 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑒(𝐸‘𝑑) = 𝑐 |
186 | | nfv 1909 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑑(𝐸‘𝑒) = 𝑐 |
187 | | fveqeq2 6905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑒 → ((𝐸‘𝑑) = 𝑐 ↔ (𝐸‘𝑒) = 𝑐)) |
188 | 185, 186,
187 | cbvrexw 3294 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑑 ∈
(ℕ0 × ℕ0)(𝐸‘𝑑) = 𝑐 ↔ ∃𝑒 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑒) = 𝑐) |
189 | 188 | biimpi 215 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑑 ∈
(ℕ0 × ℕ0)(𝐸‘𝑑) = 𝑐 → ∃𝑒 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑒) = 𝑐) |
190 | 189 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) → ∃𝑒 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑒) = 𝑐) |
191 | 184, 190 | r19.29a 3151 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)) |
192 | 191 | ex 411 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (∃𝑑 ∈ (ℕ0 ×
ℕ0)(𝐸‘𝑑) = 𝑐 → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))) |
193 | 41, 192 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)) |
194 | 193 | simpld 493 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (𝑐 gcd 𝑅) = 1) |
195 | 3 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝑅 ∈
ℕ0) |
196 | 193 | simprd 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝑐 ∈ ℤ) |
197 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(Unit‘(ℤ/nℤ‘𝑅)) =
(Unit‘(ℤ/nℤ‘𝑅)) |
198 | 4, 197, 8 | znunit 21514 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℕ0
∧ 𝑐 ∈ ℤ)
→ ((𝐿‘𝑐) ∈
(Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1)) |
199 | 195, 196,
198 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → ((𝐿‘𝑐) ∈
(Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1)) |
200 | 194, 199 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (𝐿‘𝑐) ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
201 | 23, 200 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (𝐿‘𝑐) ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
202 | 201 | adantr 479 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ (𝐿‘𝑐) = 𝑎) → (𝐿‘𝑐) ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
203 | 20, 202 | eqeltrd 2825 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) ∧ (𝐿‘𝑐) = 𝑎) → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
204 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐(𝐿‘𝑏) = 𝑎 |
205 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝐿‘𝑐) = 𝑎 |
206 | | fveqeq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑐 → ((𝐿‘𝑏) = 𝑎 ↔ (𝐿‘𝑐) = 𝑎)) |
207 | 204, 205,
206 | cbvrexw 3294 |
. . . . . . . . . . 11
⊢
(∃𝑏 ∈
(𝐸 “
(ℕ0 × ℕ0))(𝐿‘𝑏) = 𝑎 ↔ ∃𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑐) = 𝑎) |
208 | 207 | biimpi 215 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
(𝐸 “
(ℕ0 × ℕ0))(𝐿‘𝑏) = 𝑎 → ∃𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑐) = 𝑎) |
209 | 208 | adantl 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) → ∃𝑐 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑐) = 𝑎) |
210 | 203, 209 | r19.29a 3151 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎) → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
211 | 210 | ex 411 |
. . . . . . 7
⊢ (𝜑 → (∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎 → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅)))) |
212 | 211 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → (∃𝑏 ∈ (𝐸 “ (ℕ0 ×
ℕ0))(𝐿‘𝑏) = 𝑎 → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅)))) |
213 | 18, 212 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅))) |
214 | 213 | ex 411 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) → 𝑎 ∈
(Unit‘(ℤ/nℤ‘𝑅)))) |
215 | 214 | ssrdv 3982 |
. . 3
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) |
216 | | hashss 14404 |
. . 3
⊢
(((Unit‘(ℤ/nℤ‘𝑅)) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤
(♯‘(Unit‘(ℤ/nℤ‘𝑅)))) |
217 | 1, 215, 216 | syl2anc 582 |
. 2
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤
(♯‘(Unit‘(ℤ/nℤ‘𝑅)))) |
218 | 4, 197 | znunithash 21515 |
. . 3
⊢ (𝑅 ∈ ℕ →
(♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅)) |
219 | 2, 218 | syl 17 |
. 2
⊢ (𝜑 →
(♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅)) |
220 | 217, 219 | breqtrd 5175 |
1
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (ϕ‘𝑅)) |