Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c4 Structured version   Visualization version   GIF version

Theorem aks6d1c4 42097
Description: Claim 4 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c4.1 (𝜑𝑁 ∈ ℕ)
aks6d1c4.2 (𝜑𝑃 ∈ ℙ)
aks6d1c4.3 (𝜑𝑃𝑁)
aks6d1c4.4 (𝜑𝑅 ∈ ℕ)
aks6d1c4.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c4.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c4.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
Assertion
Ref Expression
aks6d1c4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6837 . . 3 (𝜑 → (Unit‘(ℤ/nℤ‘𝑅)) ∈ V)
2 aks6d1c4.4 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
32nnnn0d 12445 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
4 eqid 2729 . . . . . . . . . . . 12 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
54zncrng 21451 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
7 crngring 20130 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
8 aks6d1c4.7 . . . . . . . . . . 11 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
98zrhrhm 21418 . . . . . . . . . 10 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
10 zringbas 21360 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
11 eqid 2729 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
1210, 11rhmf 20370 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
136, 7, 9, 124syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
1413ffund 6656 . . . . . . . 8 (𝜑 → Fun 𝐿)
1514adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → Fun 𝐿)
16 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
17 fvelima 6888 . . . . . . 7 ((Fun 𝐿𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
1815, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎)
19 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) = 𝑎)
2019eqcomd 2735 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 = (𝐿𝑐))
21 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝜑)
22 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
2321, 22jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))))
24 ovexd 7384 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) ∈ V)
25 aks6d1c4.6 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
26 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
27 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙 ∈ V
2826, 27op1std 7934 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (1st𝑚) = 𝑘)
2928oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑚)) = (𝑃𝑘))
3026, 27op2ndd 7935 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ⟨𝑘, 𝑙⟩ → (2nd𝑚) = 𝑙)
3130oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑𝑙))
3229, 31oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3332mpompt 7463 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
3433eqcomi 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3525, 34eqtri 2752 . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))))
3624, 35fmptd 7048 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸:(ℕ0 × ℕ0)⟶V)
3736ffund 6656 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐸)
3837adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → Fun 𝐸)
39 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0)))
40 fvelima 6888 . . . . . . . . . . . . . . . 16 ((Fun 𝐸𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐)
42 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) = 𝑐)
4342eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 = (𝐸𝑒))
4443oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = ((𝐸𝑒) gcd 𝑅))
45 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝜑)
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
4745, 46jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → (𝜑𝑒 ∈ (ℕ0 × ℕ0)))
4835a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑚 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚)))))
49 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → 𝑚 = 𝑒)
5049fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (1st𝑚) = (1st𝑒))
5150oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (𝑃↑(1st𝑚)) = (𝑃↑(1st𝑒)))
5249fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → (2nd𝑚) = (2nd𝑒))
5352oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑁 / 𝑃)↑(2nd𝑚)) = ((𝑁 / 𝑃)↑(2nd𝑒)))
5451, 53oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ 𝑚 = 𝑒) → ((𝑃↑(1st𝑚)) · ((𝑁 / 𝑃)↑(2nd𝑚))) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
55 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑒 ∈ (ℕ0 × ℕ0))
56 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ V)
5748, 54, 55, 56fvmptd 6937 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) = ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))))
58 aks6d1c4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ∈ ℙ)
59 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℕ)
6160nnzd 12498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
63 xp1st 7956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (1st𝑒) ∈ ℕ0)
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (1st𝑒) ∈ ℕ0)
6562, 64zexpcld 13994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑒)) ∈ ℤ)
66 aks6d1c4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃𝑁)
6760nnne0d 12178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ≠ 0)
68 aks6d1c4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℕ)
6968nnzd 12498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℤ)
70 dvdsval2 16166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7161, 67, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
7266, 71mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
74 xp2nd 7957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑒 ∈ (ℕ0 × ℕ0) → (2nd𝑒) ∈ ℕ0)
7574adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (2nd𝑒) ∈ ℕ0)
7673, 75zexpcld 13994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ)
7765, 76zmulcld 12586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) ∈ ℤ)
7857, 77eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝐸𝑒) ∈ ℤ)
7957oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅))
802nnzd 12498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 ∈ ℤ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℤ)
8277, 81gcdcomd 16425 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))))
8380, 61, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 aks6d1c4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 gcd 𝑅) = 1)
8569, 80jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
86 gcdcom 16424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
88 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
9089pm5.74i 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
9184, 90mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑅 gcd 𝑁) = 1)
9291, 66jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
93 rpdvds 16571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
9483, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd 𝑃) = 1)
9594adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd 𝑃) = 1)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd 𝑃) = 1)
972ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
9860ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℕ)
99 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (1st𝑒) ∈ ℕ)
100 rprpwr 16470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → ((𝑅 gcd 𝑃) = 1 → (𝑅 gcd (𝑃↑(1st𝑒))) = 1))
10296, 101mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
10364anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
104 elnnne0 12398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1st𝑒) ∈ ℕ ↔ ((1st𝑒) ∈ ℕ0 ∧ (1st𝑒) ≠ 0))
105103, 104sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (1st𝑒) ≠ 0) → (1st𝑒) ∈ ℕ)
106105ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((1st𝑒) ≠ 0 → (1st𝑒) ∈ ℕ))
107106necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (1st𝑒) ∈ ℕ → (1st𝑒) = 0))
108107imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (1st𝑒) = 0)
109108oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑(1st𝑒)) = (𝑃↑0))
110109oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = (𝑅 gcd (𝑃↑0)))
11162zcnd 12581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℂ)
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
113112exp0d 14047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑃↑0) = 1)
114113oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = (𝑅 gcd 1))
11581adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
116 gcd1 16439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℤ → (𝑅 gcd 1) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
118114, 117eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑0)) = 1)
119110, 118eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (1st𝑒) ∈ ℕ) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
120102, 119pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑃↑(1st𝑒))) = 1)
12180, 72, 693jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12268nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑁 ∈ ℝ)
123122recnd 11143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ∈ ℂ)
12460nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑𝑃 ∈ ℝ)
125124recnd 11143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑃 ∈ ℂ)
12668nngt0d 12177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑁)
127126gt0ne0d 11684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑁 ≠ 0)
128123, 125, 127, 67ddcand 11920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = 𝑃)
129128, 61eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
13060nngt0d 12177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → 0 < 𝑃)
131122, 124, 126, 130divgt0d 12060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝑁 / 𝑃))
132131gt0ne0d 11684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑁 / 𝑃) ≠ 0)
133 dvdsval2 16166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
13472, 132, 69, 133syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
135129, 134mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
13691, 135jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
137 rpdvds 16571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
138121, 136, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
140139adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
1412ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℕ)
14272, 131jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
143 elnnz 12481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
144142, 143sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ)
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℕ)
147 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (2nd𝑒) ∈ ℕ)
148 rprpwr 16470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℕ ∧ (𝑁 / 𝑃) ∈ ℕ ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
149141, 146, 147, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
150140, 149mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
15175anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
152 elnnne0 12398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2nd𝑒) ∈ ℕ ↔ ((2nd𝑒) ∈ ℕ0 ∧ (2nd𝑒) ≠ 0))
153151, 152sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ (2nd𝑒) ≠ 0) → (2nd𝑒) ∈ ℕ)
154153ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((2nd𝑒) ≠ 0 → (2nd𝑒) ∈ ℕ))
155154necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (¬ (2nd𝑒) ∈ ℕ → (2nd𝑒) = 0))
156155imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (2nd𝑒) = 0)
157156oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑(2nd𝑒)) = ((𝑁 / 𝑃)↑0))
158157oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd ((𝑁 / 𝑃)↑0)))
159123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℂ)
160159adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑁 ∈ ℂ)
161111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ∈ ℂ)
16267ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑃 ≠ 0)
163160, 161, 162divcld 11900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑁 / 𝑃) ∈ ℂ)
164163exp0d 14047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → ((𝑁 / 𝑃)↑0) = 1)
165164oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑0)) = (𝑅 gcd 1))
166158, 165eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = (𝑅 gcd 1))
16781adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → 𝑅 ∈ ℤ)
168167, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd 1) = 1)
169166, 168eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑒 ∈ (ℕ0 × ℕ0)) ∧ ¬ (2nd𝑒) ∈ ℕ) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
170150, 169pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1)
171120, 170jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1))
172 rpmul 16570 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℤ ∧ (𝑃↑(1st𝑒)) ∈ ℤ ∧ ((𝑁 / 𝑃)↑(2nd𝑒)) ∈ ℤ) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
17381, 65, 76, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑅 gcd (𝑃↑(1st𝑒))) = 1 ∧ (𝑅 gcd ((𝑁 / 𝑃)↑(2nd𝑒))) = 1) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1))
174171, 173mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (𝑅 gcd ((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒)))) = 1)
17582, 174eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → (((𝑃↑(1st𝑒)) · ((𝑁 / 𝑃)↑(2nd𝑒))) gcd 𝑅) = 1)
17679, 175eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) gcd 𝑅) = 1)
17778, 176jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
17847, 177syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
179178adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) ∈ ℤ ∧ ((𝐸𝑒) gcd 𝑅) = 1))
180179simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝐸𝑒) gcd 𝑅) = 1)
18144, 180eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝑐 gcd 𝑅) = 1)
182179simpld 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → (𝐸𝑒) ∈ ℤ)
18343, 182eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → 𝑐 ∈ ℤ)
184181, 183jca 511 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) ∧ 𝑒 ∈ (ℕ0 × ℕ0)) ∧ (𝐸𝑒) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
185 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑒(𝐸𝑑) = 𝑐
186 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑑(𝐸𝑒) = 𝑐
187 fveqeq2 6831 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑒 → ((𝐸𝑑) = 𝑐 ↔ (𝐸𝑒) = 𝑐))
188185, 186, 187cbvrexw 3272 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 ↔ ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
189188biimpi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
190189adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ∃𝑒 ∈ (ℕ0 × ℕ0)(𝐸𝑒) = 𝑐)
191184, 190r19.29a 3137 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ ∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
192191ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (∃𝑑 ∈ (ℕ0 × ℕ0)(𝐸𝑑) = 𝑐 → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ)))
19341, 192mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝑐 gcd 𝑅) = 1 ∧ 𝑐 ∈ ℤ))
194193simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝑐 gcd 𝑅) = 1)
1953adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑅 ∈ ℕ0)
196193simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → 𝑐 ∈ ℤ)
197 eqid 2729 . . . . . . . . . . . . . . 15 (Unit‘(ℤ/nℤ‘𝑅)) = (Unit‘(ℤ/nℤ‘𝑅))
1984, 197, 8znunit 21470 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ0𝑐 ∈ ℤ) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
199195, 196, 198syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → ((𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)) ↔ (𝑐 gcd 𝑅) = 1))
200194, 199mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20123, 200syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
202201adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → (𝐿𝑐) ∈ (Unit‘(ℤ/nℤ‘𝑅)))
20320, 202eqeltrd 2828 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) ∧ 𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))) ∧ (𝐿𝑐) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
204 nfv 1914 . . . . . . . . . . . 12 𝑐(𝐿𝑏) = 𝑎
205 nfv 1914 . . . . . . . . . . . 12 𝑏(𝐿𝑐) = 𝑎
206 fveqeq2 6831 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝐿𝑏) = 𝑎 ↔ (𝐿𝑐) = 𝑎))
207204, 205, 206cbvrexw 3272 . . . . . . . . . . 11 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 ↔ ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
208207biimpi 216 . . . . . . . . . 10 (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎 → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
209208adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → ∃𝑐 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑐) = 𝑎)
210203, 209r19.29a 3137 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
211210ex 412 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
212211adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → (∃𝑏 ∈ (𝐸 “ (ℕ0 × ℕ0))(𝐿𝑏) = 𝑎𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
21318, 212mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅)))
214213ex 412 . . . 4 (𝜑 → (𝑎 ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) → 𝑎 ∈ (Unit‘(ℤ/nℤ‘𝑅))))
215214ssrdv 3941 . . 3 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅)))
216 hashss 14316 . . 3 (((Unit‘(ℤ/nℤ‘𝑅)) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Unit‘(ℤ/nℤ‘𝑅))) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2171, 215, 216syl2anc 584 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(Unit‘(ℤ/nℤ‘𝑅))))
2184, 197znunithash 21471 . . 3 (𝑅 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
2192, 218syl 17 . 2 (𝜑 → (♯‘(Unit‘(ℤ/nℤ‘𝑅))) = (ϕ‘𝑅))
220217, 219breqtrd 5118 1 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  wss 3903  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cexp 13968  chash 14237  cdvds 16163   gcd cgcd 16405  cprime 16582  ϕcphi 16675  Basecbs 17120  Ringcrg 20118  CRingccrg 20119  Unitcui 20240   RingHom crh 20354  ringczring 21353  ℤRHomczrh 21406  ℤ/nczn 21409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413
This theorem is referenced by:  aks6d1c7lem1  42153
  Copyright terms: Public domain W3C validator